
Multi-Return

Macro Tree Transducers

The Univ. of Tokyo Kazuhiro Inaba

The Univ. of Tokyo Haruo Hosoya

NICTA, and UNSW Sebastian Maneth

CIAA 2008, San Francisco

Tree to Tree Translations

 Applications
 Compiler

 Natural Language
Processing

 XML Query/Translation
 XSLT, XQuery, XDuce, …

…

 Models
 Tree Transducer

 Top-down / bottom-up

 with/without lookahead …

 Attributed Tree Transducer

MSO Tree Translation

 Pebble Tree Transducer

Macro Tree Transducer

…

Multi-Return Macro Tree
Transducer

Models of Tree Translation

 Top-down Tree Transducer

[Rounds 70, Thatcher 70]

Finite-state translation defined by structural

(mutual) recursion on the input tree

<q, bin(x1,x2)> → fst(<q,x1>, <p,x2>)
<q, leaf> → leaf

<p, bin(x1,x2)> → snd(<q,x1>, <p,x2>)
<p, leaf> → leaf

<q, bin(x1,x2)> → fst(<q,x1>, <p,x2>)
<q, leaf> → leaf

<p, bin(x1,x2)> → snd(<q,x1>, <p,x2>)
<p, leaf> → leaf

bin

bin bin

bin leaf

leaf leaf

leaf leaf

fst

fst snd

fst leaf

leaf leaf

leaf leaf

Models of Tree Translation

 Macro Tree Transducer (MTT)

[Engelfriet 80, Courcell&Franchi-Zannettacci 82]

Tree Transducer + Context parameters

Strictly more expressive than tree transducers

<q, bin(x1,x2)> → bin(<p,x1>(leaf),<p,x2>(leaf))

<p, bin(x1,x2)>(y) → bin(<p,x1>(1(y)),<p,x2>(2(y)))
<p, leaf>(y) → y

bin

bin bin

bin leaf

leaf leaf

leaf leaf

bin

bin bin

bin 2

1 2

1 2

1

1

leaf

1

1

leaf

1

leaf

2

leaf

2

leaf

<q, bin(x1,x2)> → bin(<p,x1>(leaf),<p,x2>(leaf))

<p, bin(x1,x2)>(y1) →
bin(<p,x1>(1(y1)),<p,x2>(2(y1)))
<p, leaf>(y1) → y1

Today‟s Topic

 Multi-Return Macro Tree Transducer

[Inaba, Hosoya, and Maneth 08]

Macro Tree Transducer + Multiple return trees

<q, bin(x1,x2)>(y1) → let (z1,z2) = <q,x1>(1(y1)) in
let (z3,z4) = <p,x2>(2(y1)) in
(bin(z1,z3), fst(z2,z4))

<q, leaf>(y1) → (leaf, y1)

<p, bin(x1,x2)>(y1) → let (z1,z2) = <q,x1>(1(y1)) in
let (z3,z4) = <p,x2>(2(y1)) in
(bin(z1,z3), snd(z2,z4))

<p, leaf>(y1) → (leaf, y1)

Outline of the Talk

 Overview

 Definitions of MTTs and mr-MTTs

 Properties of mr-MTTs

Expressiveness

Closure under DtT composition

 Characterization of mr-MTTs

Definition of

Macro Tree Transducers (MTTs)

 A MTT is a tuple M = (Q, Σ, Δ, q0, R) where

Q : Ranked set of states (rank = # of parameters)

 Σ : Ranked set of input alphabet

 Δ : Ranked set of output alphabet

 q0 : Initial state of rank-0

 R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → RHS

RHS ::= δ(RHS, …, RHS)
| <q’, xi>(RHS, …, RHS)
| yi

Definition of MTTs

 An MTT is

Deterministic if for every pair of q∈Q, σ∈Σ,

there exists at most one rule of the form

<q,σ(…)>(…) → …

Nondeterministic otherwise

Total if there‟s at least one rule of the form

<q,σ(…)>(…) → … for each of them

Linear if in every right-hand side, each input

variable xi occurs at most once

Translation realized by MTTs

 The translation realized by M is

τM = { (s,t) ∈ TΣ×TΔ | <q0,s> ⇒* t }

where ⇒ is the rewriting relation
 By interpreting R as the set of rewrite rules

 We consider only the Call-by-Value (Inside-Out)

rewriting order in this work

Inside-Out (IO) Evaluation

 Example

<q0, a(x)> → <q1,x>(<q2,x>)
<q1, e>(y) → b(y, y)
<q2, e> → c
<q2, e> → d

<q0, a(e)> ⇒ <q1,e>(<q2,e>) ⇒ <q1,e>(c) ⇒ b(c,c)

⇒ <q1,e>(d) ⇒ b(d,d)

⇒ b(<q2,e>, <q2,e>)

Why Nondeterminism and Why IO?

 IO-Nondeterminism in XML translation

languages

 In pattern matching (XDuce)

 match(e) with pat1 -> e1 | pat2 -> e2

 If e matches both pat1 and pat2, then it nondeterminisitically

chooses e1 or e2

 Approximation of Turing-complete languages

(XSLT, …)

 if (complicated-condition) then e1 else e2

 (complicated-condition) may not be able to be modeled by

MTTs

Multi-Return Macro Tree Transducer

(mr-MTT)

 An mr-MTT is a tuple M = (Q, Σ, Δ, q0, R) where

Q : Doubly ranked set of states (#params, #retvals)

 Σ : Ranked set of input alphabet

 Δ : Ranked set of output alphabet

 q0 : Initial state of rank (0, 1)

 R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → RHS

RHS ::= LET* (TC, …, TC)
LET ::= let (z1,…,zn) = <q,xi>(TC, …, TC) in
TC ::= δ(TC, …, TC) | yi | zi

MTT vs mr-MTT ≒ Tree vs DAG

 MTT  mr-MTT

<q, a(x)>(y) →
b(<q,x>(c(y)), <q,x>(d(y)))

<q, a(x)>(y) →
let (z1,z2) = <q,x>(c(y)) in

(d(z1), z2)

b

<q,x><q,x>

d

y

c

y

d

<q,x>

c

y

Notations

 T : the class of translation realized by top-down TTs

 MT : the class of translations realized by MTTs

 MM : the class of translations realized by mr-MTTs

 d-MM (for d ∈ N) : the class of translations realizable by

mr-MTTs whose return-tuples are at most length d

 Prefix D stands for “deterministic”, t for “total”, and L for “linear”. E.g.,

 DMT : the class of translations realized by deterministic MTTs

 LDtT : the class of translations realized by linear deterministic total TTs

Good Properties of mr-MTTs

Expressiveness

Question:

Does the „multi-return‟ feature really

adds any power to MTTs?

 Answer:

Yes, it does! (for nondetermistic MTTs)

Expressiveness of Det. Mr-MTT

 DMT = DMM (Corollary 5)

 Intuition: State Splitting

a state q returning n-tuple of trees

≒
n states q1 … qn where qi returns the

i-th component of the return value of q.

Expressiveness of Nondet. 1-MM

 MT ⊊ 1-MM (Proposition 12)

 Intuition: copying by „let‟ variables adds
some power

<q0,b(x1,x2)> →
let z = <q,x1>(a,a) in

<q,x2>(z, z)

<q0,b(x1,x2)> →

<q,x2>(<q,x1>(a,a), <q,x1>(a,a))

Expressiveness of 2-MM

 1-MM ⊊ 2-MM (Theorem 13)

Witnessed by the „twist‟ translation in the paper

r

s

s

z

r

a

a

e

A

A

E

r

a

b

e

B

A

E

r

b

a

e

A

B

E

r

b

b

e

B

B

E

Expressiveness of d-MM

 Conjecture

d-MM ⊊ (d+1)-MM for every d ≧ 1

Closure under composition

 MTTs are very poor in composition:

LHOM ; MT ⊈ MT

MT ; DtT ⊈ MT

 For mr-MTTs:

DT ; MM ⊆ MM

MM ; DtT ⊆ MM (Theorem 11)

Proof Sketch

 DT ; MM ⊆ MM
 Proof. Product construction

P : the set of states of the DT
Q : the set of states of the lhs MM

→ MM with set of states P×Q can simulate the
composition (rules for the state (p,q) are obtained
by „applying‟ q to rules for p, in which we need
variable-bindings by „let‟).

 MM ; DtT ⊆ MM
 Proof. (A variant of) product construction

Q : states of lhs MM, P : states of DtT
→ MM with set of states Q, where ranks of each
q∈Q is multiplied by |P| (a state with m params
& d retvals becomes m|P| params & d|P| retvals).

Characterization of mr-MTTs

 Question:
How precisely powerful than MTTs?

 Answer:
MM ⊆ LHOM ; MT ; LDtT

 proven through two lemmas
 MM ⊆ 1-MM ; LDtT

 1-MM ⊆ LHOM ; MT

Characterization of mr-MTTs

(Simulating multiple return values)

 MM ⊆ 1-MM ; LDtT (Lemma 2)

 Intuition: the 1-MM outputs symbolic

representations of tupling and projection

operations, and the LDtT carries them out

<q, b(x)> →
let (z1,z2) = <q,x> in

(a(z1), b(z2))

<q, b(x)> →
let z = <q,x> in

τ(a(1st(z)), b(2nd(z)))

Characterization of mr-MTTs

(Simulating „let‟-variable bindings)

 1-MM ⊆ LHOM ; MT (Lemma 3)

 Intuition: MTTs cannot bind and copy trees

by ‟let‟-variables, but they can by context

parameters

bin

leaf leaf

bin

l l

b

b

leaf

l

leaf

l

LHOM

Evaluate the 1st

„let … in‟

Evaluate the

2nd „let … in‟

Generate Output

Tree

MT

Conclusion

 Multi-Return Macro Tree Transducers
= Macro tree transducers with multiple return-values

 Expressiveness
 DMT = DMM

MT ⊊ 1-MM ⊊ 2-MM

 Closure under Composition
 DT ; MM ⊆ MM

MM ; DtT ⊆ MM

 Characterization
MM = LHOM ; MT ; LDtT

