Multl-Return

Macro Tree Transducers

CIAA 2008, San Francisco

The Univ. of Tokyo KaZUhirO Inaba
The Univ. of Tokyo Hal‘UO HOsoya
NICTA, and UNsw Sebastian Maneth

Tree to Tree Translations

m Applications m Models
Compiler Tree Transducer
Natural Language = Top-down / bottom-up
Processing = with/without lookahead ...
XML Query/Translation Attributed Tree Transducer
= XSLT, XQuery, XDuce, ... [1 MSO Tree Translation

Pebble Tree Transducer
Macro Tree Transducer

Multi-Return Macro Tree
Transducer

Models of Tree Translation

m Top-down Tree Transducer
[Rounds 70, Thatcher 70]

Finite-state translation defined by structural
(mutual) recursion on the input tree

<q, bin(x;,Xx;)> -+ fst(<q,x;>, <p,X>)

<q, leaf> -

—
(]
o))
-h ™

<p, m(X1!X2)> = S_nd <q, X1>, <p!X2>)

<p, leaf> -

—
(]
o))
-h ™

Isy
Is) fond

(o) (ost) (st (ot
o) (e

’ @O @@
=l

<q, bin(x;,Xx,)> -» fst(
<q, leaf> > Jeaf
<p, bin(xy,%x)> - snd(
<p, leaf> -» leaf

<q!X1>! <p!X2>)

<q!X1>! <p!X2>)

" A
Models of Tree Translation

m Macro Tree Transducer (MTT)
[Engelfriet 80, Courcell&Franchi-Zannettacci 82]

Tree Transducer + Context parameters
Strictly more expressive than tree transducers

<q, bin(x;,x;,)> - bin(<p,x;>(leaf),<p,x;>(leaf))

<p, bin(x;,x;)>Cy) » bin(<p,x;>(1Cy)),<p,x>(2Cy)))
<p, leaf>(y) -y

<q, bin(x;,x;)> - bin(<p,x;>(leaf),<p,x;>(leaf))

<p, bin(xy,x;)>(Cy1) >
bin(C <p,x;>(1Cy)),<p,x>(2Cy)))

<p, leat>(y,) - Y

Today's Topic

m Multi-Return Macro Tree Transducer
[Inaba, Hosoya, and Maneth 08]

Macro Tree Transducer + Multiple return trees

<q, bin(xy,%x)>(y;) - let (z1,2z;) = <q,x;>(1(yl)) 1in
let (z5,z4) = <p,x,>(2(CYy1)) 1n
(bin(z;,z3), fst(z,,z,))
<q, leaf>(y;) - (leaf, y;)

<p, bin(x;,x;)>(Cy;) - let (z1,2,) = <q,X;>(1(Cyy)) 1in
let (z3,z4) = <p,Xx,>(2(CYy1)) 1n
(bin(z;,z;3), snd(z,,z,))
<p, leaf>(y,) - (leaf, yy)

Outline of the Talk

m Overview
m Definitions of M

[s and mr-MT

m Properties of mr-MTTs

EXxpressiveness

Closure under DtT composition
m Characterization of mr-MTTs

" B
Definition of
Macro Tree Transducers (MTTSs)

m AMTT is atuple M =(Q, 2, A, q,, R) where
Q : Ranked set of states (rank = # of parameters)
2 . Ranked set of input alphabet
A : Ranked set of output alphabet
o : Initial state of rank-0
R : Set of rules of the following form:

<q, 0(Xqyws X)>(Y1y s ¥Yn) = RHS
RHS ::= 8(RHS, .., RHS)
| <q’, X;>(C RHS, .., RHS)
| Y;

" I
Definition of MTTs

m AN MTT Is

Deterministic if for every pair of q€Q, c €2,
there exists at most one rule of the form

<q,0(...)>(...) > ...
Nondeterministic otherwise

Total if there’s at least one rule of the form
<g,0(...)>(...) — ... for each of them

Linear If in every right-hand side, each input
variable x; occurs at most once

" S
Translation realized by MTTs

m The translation realized by M is
Tw={(St) € Ts XTp| <Qp,8>=*t }

where = Is the rewriting relation

= By interpreting R as the set of rewrite rules

= We consider only the Call-by-Value (Inside-Out)
rewriting order in this work

" J
Inside-Out (I0) Evaluation

m Example

<o, a(X)> -» <q1,x>(<q;,Xx>)
<q;1, §>()’) = b(y! y)

<4;, &> - C

<4;, &> -~ d

<qy, a(e)> = <qi,e>(<q,,e>) = <q;,e>(¢) = b(c,0)

= <q;,e>(d) = b(d,d)

—=bl o o> __co o> 3

Why Nondeterminism and Why |O?

m |O-Nondeterminism in XML translation
languages

In pattern matching (XDuce)
m match(e) with patl -> el | pat2 -> e2

If e matches both patl and pat2, then it nondeterminisitically
chooses el or e2

Approximation of Turing-complete languages
(XSLT, ...)

m 1 (complicated-condition) then el else e2

(complicated-condition) may not be able to be modeled by
MTTs

"
Multi-Return Macro Tree Transducer
(mr-MTT)

m An mr-MTT is atuple M = (Q, £, A, q,, R) where
Q : Doubly ranked set of states (#params, #retvals)
2 . Ranked set of input alphabet
A : Ranked set of output alphabet
Jo : Initial state of rank (0O, 1)
R : Set of rules of the following form:

<q, 0(Xqyws X)>(Y1y s ¥Yn) = RHS

RHS ::= LET" (TC, .., TC)

LET ::= let (z{,..,Z,) = <q,X;>(TC, .., TC) 1n
TC ::=d8(7C, .., TCQ) | y; | z;

MTT vs mr-MTT = Tree vs DAG

m MTT

m Mr-MTT

<q, a(x)>Cy) -
b(<q,x>(c(y)), <q,x>(d(y)))

<q, a(x)>(y) -
let (z1,z,) = <q,x>(c(y)) in

d(zp, z,)
’ ’
b d
/\
<qI,X> <q|,X> <qI,X>
s 9 %
y y y

" A
Notations

m [: the class of translation realized by top-down TTs
m MT : the class of translations realized by MTTs
m MM : the class of translations realized by mr-MTTs

m d-MM (ford € N) : the class of translations realizable by
mr-MTTs whose return-tuples are at most length d

m Prefix D stands for “deterministic”, t for “total”, and L for “linear”. E.g.,
DMT : the class of translations realized by deterministic MTTs
LDTT : the class of translations realized by linear deterministic total TTs

Good Properties of mr-MTTSs

" J
Expressiveness
m Question:

Does the ‘'multi-return’ feature really
adds any power to MTTs?

m Answer:
Yes, it does! (for nondetermistic MTTS)

" J
Expressiveness of Det. Mr-MTT

m DMT =DMM (Corollary 5)

m [ntuition: State Splitting
a state g returning n-tuple of trees
n states q, ... g, where g; returns the
I-th component of the return value of g.

" I
Expressiveness of Nondet. 1-MM

a MT ¢ 1-MM (Proposition 12)

m Intuition: copying by ‘let’ variables adds
some power

<qo,b(X1,X3)> -
let z = <q,x>(@,a) in
<q,xX>(z, z)

<fosb(X1,%,)> -
<q,X>(<q,x;>(@,a), <q,x>C@,a))

" S
Expressiveness of 2-MM

m1-MM ¢ 2-MM (Theorem 13)
Witnessed by the ‘twist’ translation in the paper

O O

(@ W (@ ®

@ (@ W b ®
@ — oc © €
(s) (1 (0
b ®) (B)

(2 (@ ®) B
(& ® &) E)

Expressiveness of d-MM

m Conjecture
d-MM < (d+1)-MM foreveryd = 1

Closure under composition

m MTTs are very poor in composition:
LHOM ; MT &€ MT
MT ; DtT &€ MT

m For mr-MTTSs:
DT ; MM & MM
MM ; DIT & MM (Theorem 11)

" A
Proof Sketch

m DI ; MM & MM

Proof. Product construction
P : the set of states of the DT
Q : the set of states of the lhs MM
— MM with set of states P X Q can simulate the
composmon (rules for the state (p,q) are obtained
by ‘applying’ q to rules for p, in which we need
variable-bindings by ‘let’).

s MM ; DtT & MM

Proof. (A variant of) product construction
Q : states of Ins MM, P : states of DtT
— MM with set of states Q, where ranks of each
€Q is multiplied by |P| (a state with m params
& d retvals becomes m|P| params & d|P| retvals).

" A
Characterization of mr-MTTs

m Question:
How precisely powerful than MTTs?

m Answer:
MM & LHOM ; MT ; LDtT
proven through two lemmas

s MM & 1-MM ; LDtT
s 1-MM & LHOM ; MT

= I
Characterization of mr-MTTs
(Simulating multiple return values)

m MM € 1-MM ; LDtT (Lemma 2)

Intuition: the 1-MM outputs symbolic
representations of tupling and projection
operations, and the LDtT carries them out

<q, b(x)> -~
let (z1,2,) = <q,x> 1in

(a(zp, b(z,))

<q, b(x)> =
let z = <q,x> 1n

T(a(1st(z)), b(2M(2)))

" I
Characterization of mr-MTTs
(Simulating ‘let’-variable bindings)

m1l-MM & LHOM ; MT (Lemma 3)

Intuition: MTTs cannot bind and copy trees
by ‘let’-variables, but they can by context
parameters

MT

Evaluate the 1st
‘let ... Iin’

Evaluate the
2nd ‘let ... in’

Generate Output
Tree

" A
Conclusion

m Multi-Return Macro Tree Transducers
= Macro tree transducers with multiple return-values

m EXxpressiveness
DMT = DMM
MT € 1-MM € 2-MM

m Closure under Composition
DT ; MM S MM
MM ; DtT S MM

m Characterization
MM = LHOM ; MT ; LDtT

