[Paper Survey] Profinite Methods in Automata Theory by Jean-Éric Pin (Invited Lecture at STACS 2009)

Presentation: IPL Rinko, Dec. 7, 2010 by Kazuhiro Inaba

The Topic of the Paper

 Investigation on (subclasses of) regular languages

by using
Topological method
Especially, "profinite metric"

Why I Read This Paper

 I want to have a different point of view on the

"Inverse Regularity Preservation" property of str/tree/graph functions

- A function
 - f :: string → string

• is IRP iff

 For any regular language L, the inverse image f⁻¹(L) = {s | f(s) ∈ L} is regular

(Why I Read This Paper) Application of IRP

- Typechecking $f :: L_{IN} \rightarrow L_{OUT}$?
 - Verify that a transformation always generates valid outputs from valid inputs.

f	L _{IN}	L _{OUT}
XSLT Template for formating bookmarks	XBEL Schema	XHTML Schema
PHP Script	Arbitrary String	String not containing " <script></script>

(Why I Read This Paper) Application of IRP

- Typechecking $f :: L_{IN} \rightarrow L_{OUT}$?
 - If f is IRP, we can check this by ...
 - f is type-correct $\Leftrightarrow f(L_{IN}) \subseteq L_{OUT}$ $\Leftrightarrow L_{IN} \subseteq f^{-1}(L_{OUT})$ $\Leftrightarrow L_{IN} \cap f^{-1}(L_{OUT}) = \Phi$

with counter-example in the unsafe case

(for experts: f is assumed to be deterministic)

(Why I Read This Paper) Characterization of IRP

- Which function is IRP?
- We know that MTT* is a strict subclass of IRP (as I have presented half a year ago). But how can we characterize the subclass?
- Is there any systematic method to define subclasses of IRP functions?

The paper [Pin 09] looks to provide an *algebraic/topological viewpoint* on regular languages, which I didn't know.

Agenda

- Metrics
- Profinite Metric
- Completion
- Characterization of
 - Regular Languages
 - Inverse Regularity Preservation
 - Subclasses of Regular Languages by "Profinite Equations"
- Summary

Notation

- I use the following notation
 - Σ = finite set of 'character's
 - Σ^* = the set of finite words (strings)

Metrics

- d :: $S \times S \rightarrow R+$
 - is a metric on a set S, if it satisfies:
 - d(x, x) = 0
 - d(x, y) = d(y, x)
 - $d(x, y) \leq d(x, z) + d(z, y)$

(triangle inequality)

- $d_R :: R \times R \rightarrow R+$
- d_R(a, b) = |a-b|
- $d_2 :: R^2 \times R^2 \rightarrow R^+$
- $d_2((a_x, a_y), (b_x, b_y)) = \int (a_x b_x)^2 + (a_y b_y)^2$
- $d_1 :: R^2 \times R^2 \rightarrow R^+$
- $d_1((a_x, a_y), (b_x, b_y)) = |a_x b_x| + |a_y b_y|$ • $d_{\infty} :: R^2 \times R^2 \rightarrow R^+$
- $d_{\infty}((a_x, a_y), (b_x, b_y)) = max(|a_x-b_x|, |a_y-b_y|)$

Metrics on Strings : Example $d_{cp}(x, y) = 2^{-cp(x,y)}$

where

- $cp(x,y) = \infty$ if x=y
- cp(x,y) = the length of the common prefix of x and y
- $d_{cp}($ "abcabc", "abcdef" $) = 2^{-3} = 0.125$ • $d_{cp}($ "zzz", "zzz" $) = 2^{-\infty} = 0$

Proof : $d_{cp}(x,y)=2^{-cp(x,y)}$ is a metric

- $d_{cp}(x,x) = 0$
- d_{cp}(x,y) = d_{cp}(y,x)
 By definition.
- $d_{cp}(x,y) \leq d_{cp}(x,z) + d_{cp}(z,y)$
 - Notice that we have either
 - $cp(x,y) \ge cp(x,z)$ or $cp(x,y) \ge cp(z,y)$.
 - Thus
 - $d_{cp}(x,y) \leq d_{cp}(x,z)$ or $d_{cp}(x,y) \leq d_{cp}(z,y)$.

Profinite Metric on Strings

$d_{mA}(x, y) = 2^{-mA(x,y)}$

where

- $mA(x,y) = \infty$ if x=y
- mA(x,y) = the size of the minimal DFA (deterministic finite automaton) that distinguishes x and y

• d_{mA}("ab", "abab") = 2⁻² = 0.25

• d_{mA} ("abab", "abababab") = $2^{-3} = 0.125$

Proof : $d_{mA}(x,y)=2^{-mA(x,y)}$ is a metric

- $d_{mA}(x,x) = 0$
- $d_{mA}(x,y) = d_{mA}(y,x)$
 - By definition.
- $d_{mA}(x,y) \leq d_{mA}(x,z) + d_{mA}(z,y)$
 - Notice that we have either
 - $mA(x,y) \ge mA(x,z)$ or $mA(x,y) \ge mA(z,y)$.
 - Thus
 - $d_{mA}(x,y) \leq d_{mA}(x,z)$ or $d_{mA}(x,y) \leq d_{mA}(z,y)$.

(Note)

- In the paper another profinite metric is defined, based on the known fact:
 - A set of string L is recognizable by DFA if and only if
 - If it is an inverse image of a subset of a finite monoid by a homomorphism
 L = ψ⁻¹(F)
 where ψ :: Σ*→M is a homomorphism,
 M is a finite monoid, F⊆M

Completion of Metric Space

• A sequence of elements x₁, x₂, x₃, ...

• is Cauchy if

 $\forall \epsilon > 0, \exists N, \forall i,k > N, d(x_i, x_k) < \epsilon$

• is convergent

 $\exists a_{\infty}, \forall \epsilon > 0, \exists N, \forall i > N, d(x_i, x_{\infty}) < \epsilon$

 <u>Completion of a metric space</u> is the minimum extension of S, whose all Cauchy sequences are convergent.

Example of Completion

 Completion of rational numbers with "normal" distance → Reals
 Q
 R

•
$$d_Q(x,y) = |x-y| - d_R(x,y) = |x-y|$$

Π

5

- 1, 1.4, 1.41, 1.41421356, ...
 3, 3.1, 3.14, 3.141592, ...
- 5, 5, 5, 5, ...

Example of Completion

- Completion of finite strings with d_{cp}
 - Σ*
 d_{cp} (Common Prefix)

- a, aa, aaa, aaaaaaaaa, ...
- ab, abab, ababab, ...
- ZZ, ZZ, ZZ, ZZ, ...

Example of Completion

- Completion of finite strings with d_{cp}
 The set of finite and infinite strings
 - Σ^* • d_{cp} (Common Prefix) $\xrightarrow{\Sigma^{\omega}} d_{cp}$

- a, aa, aaa, aaaaaaaaa, ...
- ab, abab, ababab, ...
- ZZ, ZZ, ZZ, ZZ, ...

Completion of Strings with Profinite Metric

•
$$d_{mA}(x, y) = 2^{-mA(x,y)}$$

Example of a Cauchy sequence:
 X_i = W^{i!} (for some string W)
 w, ww, wwwww, w²⁴, w¹²⁰, w⁷²⁰, ...

(NOTE: **Wⁱ** is not a Cauchy sequence)

Completion of Strings with Profinite Metric

- Completion of
 - Σ^* with $d_{mA}(x, y) = 2^{-mA(x,y)}$
- yields the set of profinite words Σ^*
- In the paper, the limit $w^{i!}$ is called $X_i = w^{i!}$ w^{ω} with a note:

Note that x^{ω} is simply a notation and one should resist the temptation to interpret it as an infinite word.

Difference from Infinite Words

- In the set of infinite words
 - $\circ a^{\omega} + b = a^{\omega}$

(since the length of the common prefix is ω , their distance is 0, hence equal)

- In the set of profinite words
 - $\circ a^{\omega} + b \neq a^{\omega}$

(their distance is 0.25, because of:

p-adic Metric on Q

- Similar concept in the Number Theory
- For each n≧2, define d'_n as
 d'_n(x,y) = n^{-a} if x-y = b/c n^a

• where $a,b,c \in Z$ and b,c is not divisible by n

• When p is a prime, d'_p is called the p-adic metric

Example (p-adic Metric)

• For each $n \ge 2$, define **d'**_n as

• d'_n(x,y) = n^{-a} if x-y = b/c n^a

• where $a,b,c \in Z$ and b,c is not divisible by n

- $d'_{10}(12345, 42345) = 10^{-4}$
- $d'_{10}(0.33, 0.43) = 10^{+1}$

Theorem [Hunter 1988]

$$\label{eq:L} \begin{split} L &\subseteq \Sigma^* \text{ is regular} \\ \text{ if and only if} \\ \text{cl}(L) \text{ is clopen in } \widehat{\Sigma^*} \end{split}$$

- clopen := closed & open
- closed := complement is open
- S is open := $\forall x \in S, \exists \epsilon > 0, \{y \mid d(x,y) < \epsilon\} \subseteq S$
- $cl(S) := unique minimum closed set \supseteq L$

Intuition

- L is regular
 - $\circ \Leftrightarrow$
- cl(L) is open
 - $\circ \Leftrightarrow$

 If cl(L) contains x, it contains all 'hardto-distinguish-from x' profinite strings

(Non-)example

- L = { aⁿbⁿ | n∈nat } is not regular
- Because
 - $\circ a^{\omega}b^{\omega}$ is contained in cl(L)
 - cl(L) do not contain $a^{\omega}b^{\omega+k!}$ for each k

a^wb^w

• but $d_{mA}(a^{\omega}b^{\omega}, a^{\omega}b^{\omega+k!}) \leq 2^{-k}$

Proof Sketch : clopen⇔regular

- L is Regular \Rightarrow cl(L) is Clopen (This direction is less surprising.)
 - It is trivially closed
 - Suppose L is regular but cl(L) is not ppen.
 - Then, $\exists x \in cl(L)$, $\forall \epsilon$, $\exists y \notin cl(L)$, $d_{mA}(x,y) < \epsilon$
 - Then, ∀n, ∃x∈L, ∃y∉L, d_{mA}(x,y)<2⁻ⁿ
 - Then, \forall size-n DFA, \exists x, y that can't be separated
 - Thus, L is not be a regular language.

(not in the paper: just my thought) Generalize: Regular \Rightarrow Clopen

(This direction is less surprising. Why?) Because it doesn't use any particular property of "regular"

• Let

- F be a set of predicates string \rightarrow bool
- siz be any function $F \rightarrow$ nat • $d_{mF}(x,y) = 2^{-\min\{siz(f) \mid f(x)\neq f(y)\}}$
- L is F-recognizable \Rightarrow cl(L) is clopen with d_{mF}

(not in the paper: just my thought) Generalize: Regular ⇒ Clopen (This direction is less surprising. Why?) Because it doesn't use any particular property of "regular"

- E.g.,
 - $d_{mPA}(x,y) = 2^{-min\{\text{#states of PD-NFA separating x&y}\}}$
 - L is context-free \Rightarrow cl(L) is clopen with d_{mPA}

(But this is not at all interesting, because any set is clopen in this metric!!)

Proof Sketch: Clopen \Rightarrow Regular

- Used lemmas:
 Σ* is compact
 - i.e., if it is covered by an infin union of open sets, then it is covered by their finite subfamily, too.
 - i.e., every infinite seq has convergent subseq
 - The proof relies on the fact: siz⁻¹(n) is finite
 - Concatenation is **continuous** in this metric
 - i.e., $\forall x \forall \epsilon \exists \delta, \forall x', d(x,x') < \delta \rightarrow d(f(x),f(x')) < \epsilon$
 - Due to $d_{mA}(wx,wy) \leq d_{mA}(x,y)$
- By these lemmas, clopen sets are shown to be covered by finite congruence, and hence regular.

Corollary $f :: \Sigma^* \to \Sigma^*$ is IRP $\widehat{f} :: \widehat{\Sigma^*} \to \widehat{\Sigma^*}$ is continuous

• continuous :=

 $\forall x \forall \epsilon \exists \delta, \forall x', d(x,x') < \delta \rightarrow d(f(x),f(x')) < \epsilon$

 Known to be equivalent to f⁻¹((cl)open) = (cl)open

"Equational Characterization"

Main interest of the paper

 Many subclasses of regular languages are characterized by Equations on Profinite Strings

A regular language L is star-free

 (i.e., in {∪,∩,¬, · }-closure of fin. langs)
 (or equivalently, FO-definable)

if and only if

Corollary: FO-definability is decidable

• $\mathbf{X}^{\omega} \equiv_{\mathsf{L}} \mathbf{X}^{\omega+1}$ • i.e., $\forall u v x, ux^{\omega}v \in cl(\mathsf{L}) \Leftrightarrow ux^{\omega+1}v \in cl(\mathsf{L})$

• A regular language L is **commutative**

if and only if

Corollary:

Commutativity is decidable

xy ≡_L yx
i.e., ∀u v x, u xy v∈cl(L) ⇔ u yx v∈cl(L)

A regular language L is dense
 (∀w, Σ* w Σ* ∩ L ≠ Φ)

if and only if

 {xρ ≡_L ρx ≡_L ρ, x ≦_L ρ}
 where ρ = lim_{n→∞} v_n, v_{n+1}=(v_n u_{n+1} v_n)^{(n+1)!} u = {ε, a, b, aa, ab, ba, bb, aaa, ...}
 i.e., ∀u v x, ... & uxv∈cl(L) ⇒ upv∈cl(L)

Theorem [Reiterman 1982]

- If a family (set of languages) F of regular languages is closed under
 - intersection, union, complement,
 - quotient $(q_a(L) = \{x \mid ax \in L\})$, and
 - inverse of homomorphism

if and only if

 It is defined by a set of profinite equations of the form: u ≡ v

Other Types of Equations

• [Pin & Gehrke & Grigorieff 2008]

We summarize on a table the various types of equations we have used so far.

Closed under	Equations	Definition
∪,∩	$u \rightarrow v$	$\widehat{\eta}(u)\in\widehat{\eta}(L)\Rightarrow\widehat{\eta}(v)\in\widehat{\eta}(L)$
quotient	$u \leqslant v$	$xvy \rightarrow xuy$
complement	$u \leftrightarrow v$	$u \to v \text{ and } v \to u$
quotient and complement	u = v	$xvy \leftrightarrow xuy$
Closed under inverse of morphisms		Interpretation of variables
all morphisms		words
nonerasing morphisms		nonempty words
length multiplying morphisms		words of equal length
length preserving morphisms		letters

Summary

Completion by the Profinite metric

$d_{mA}(x, y) = 2^{-min_automaton(x,y)}$

is used as a tool to characterize (subclasses of) regular languages