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The Topic of the Paper

 Investigation on

(subclasses of) regular languages

by using

◦ Topological method

◦ Especially, “profinite metric”



Why I Read This Paper

 I want to have a different point of

view on the

“Inverse Regularity Preservation”

property of str/tree/graph functions

◦ A function

 f :: string  string

◦ is IRP iff

 For any regular language L, the inverse image

f-1(L)  =  {s | f(s) ∈ L} is regular



(Why I Read This Paper)

Application of IRP

 Typechecking f :: LIN → LOUT ？
◦ Verify that a transformation always 

generates valid outputs from valid inputs.

f LIN LOUT

XSLT Template for 

formating bookmarks
XBEL  Schema XHTML Schema

PHP Script Arbitrary String
String not containing 

“<script>”



(Why I Read This Paper)

Application of IRP

 Typechecking f :: LIN → LOUT ？
◦ If f is IRP, we can check this by …

f is type-correct

⇔ f(LIN) ⊆ LOUT 

⇔ LIN ⊆ f-1(LOUT)
⇔ LIN ∩ f-1(LOUT)＝Φ

with counter-example in the unsafe case

(for experts:  f is assumed to be deterministic)



(Why I Read This Paper)

Characterization of IRP 
 Which function is IRP?

 We know that MTT* is a strict subclass of 
IRP (as I have presented half a year ago). But how 
can we characterize the subclass?

 Is there any systematic method to define 
subclasses of IRP functions?

The paper [Pin 09] looks to provide an 

algebraic/topological viewpoint on 

regular languages, which I didn‟t know.
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Notation

 I use the following notation

◦ Σ  = finite set of „character‟s

◦ Σ* = the set of finite words (strings)

 e.g.,

◦ Σ = {0,1}

 Σ* = { ε, 0, 1, 00, 01, 10, … }

◦ Σ = {a,b,c,…,z,A,B,C,…,Z}

 Σ* = { ε, a, b, …, HelloWorld, …  }



Metrics

 d  ::  S × S  R+

◦ is a metric on a set S, if it satisfies:

d(x, x) = 0

d(x, y) = d(y, x)

d(x, y) ≦ d(x, z) + d(z, y)

(triangle inequality)



Example
 dR :: R × R  R+

 dR(a, b) = |a-b|

 d2 :: R2 × R2
 R+

 d2( (ax,ay), (bx,by) ) = √ (ax-bx)
2+ (ay-by)

2

 d1 :: R2 × R2
 R+

 d1( (ax,ay), (bx,by) ) = |ax-bx| + |ay-by|

 d∞ :: R2 × R2
 R+

 d∞( (ax,ay), (bx,by) ) = max(|ax-bx|, |ay-by|)



Metrics on Strings : Example

dcp(x, y) = 2
-cp(x,y)

where

 cp(x,y) = ∞ if x=y

 cp(x,y) = the length of the common prefix

of x and y

 dcp( “abcabc”, “abcdef” ) = 2-3 = 0.125

 dcp( “zzz”, “zzz” ) = 2-∞ = 0



Proof : dcp(x,y)=2
-cp(x,y)

is a metric

 dcp(x,x) = 0

 dcp(x,y) = dcp (y,x)

◦ By definition.

 dcp(x,y) ≦ dcp(x,z) + dcp(z,y)

◦ Notice that we have either

 cp(x,y) ≧ cp(x,z)   or    cp(x,y) ≧ cp(z,y).

◦ Thus

 dcp(x,y)≦ dcp(x,z)   or   dcp(x,y) ≦ dcp(z,y).



Profinite Metric on Strings

dmA(x, y) = 2
-mA(x,y)

where

 mA(x,y) = ∞ if x=y

 mA(x,y) = the size of the minimal DFA

(deterministic finite automaton)

that distinguishes x and y



Example

 dmA(“aa”, “aaa”) = 2-2 = 0.25

 dmA(a
119,a120) = 2-2 = 0.25

 dmA(a
60, a120) = 2-7 = 0.0078125

F
a

a

F

a a a a a a

a



Example

 dmA(“ab”, “abab”) = 2-2 = 0.25

 dmA(“abab”, “abababab”) = 2-3 = 0.125

F
b

b

a a

F
b

b

a b a
a



Proof : dmA(x,y)=2
-mA(x,y)

is a metric

 dmA(x,x) = 0

 dmA(x,y) = dmA(y,x)

◦ By definition.

 dmA(x,y) ≦ dmA(x,z) + dmA(z,y)

◦ Notice that we have either

 mA(x,y) ≧ mA(x,z)   or    mA(x,y) ≧ mA(z,y).

◦ Thus

 dmA(x,y)≦ dmA(x,z)   or   dmA(x,y) ≦ dmA(z,y).



(Note)

 In the paper another profinite metric 

is defined, based on the known fact:

◦ A set of string L is recognizable by DFA

if and only if

◦ If it is an inverse image of a subset of a 

finite monoid by a homomorphism

L = ψ-1(F)

where   ψ :: Σ*M  is a homomorphism,

M is a finite monoid,  F⊆M



Completion of Metric Space

 A sequence of elements x1, x2, x3, …

◦ is Cauchy if

∀ε>0, ∃N, ∀i,k>N, d(xi, xk)<ε
◦ is convergent

∃a∞, ∀ε>0, ∃N, ∀i>N, d(xi,x∞)<ε

 Completion of a metric space is the 

minimum extension of S, whose all 

Cauchy sequences are convergent.



Example of Completion

 Completion of rational numbers

with “normal” distance  Reals

◦ Q R

◦ dQ(x,y) = |x-y| dR(x,y) = |x-y|

 1, 1.4, 1.41, 1.41421356, … √2

 3, 3.1, 3.14, 3.141592, … π

 5, 5, 5, 5, … 5



Example of Completion

 Completion of finite strings with dcp

◦ Σ*

◦ dcp (Common Prefix)

 a, aa, aaa, aaaaaaaa, …

 ab, abab, ababab, …

 zz, zz, zz, zz, …



Example of Completion

 Completion of finite strings with dcp

 the set of finite and infinite strings

◦ Σ* Σω

◦ dcp (Common Prefix) dcp

 a, aa, aaa, aaaaaaaa, … aω

 ab, abab, ababab, … (ab)ω

 zz, zz, zz, zz, … zz



Completion of Strings with Profinite Metric

 dmA(x, y) = 2
-mA(x,y)

 Example of a Cauchy sequence:

xi = wi!
(for some string w)

w, ww, wwwwww, w24, w120, w720, …

(NOTE:  wi is not a Cauchy sequence)



Completion of Strings with Profinite Metric

 Completion of 

◦ Σ*  with dmA(x, y) = 2
-mA(x,y)

 yields the set of profinite words Σ*

 In the paper, the limit wi! is called

xi = wi! wω

with a note:

Note that xω is simply a notation and one should resist 

the temptation to interpret it as an infinite word.



Difference from Infinite Words

 In the set of infinite words

◦aω + b = aω

(since the length of the common prefix

is ω, their distance is 0, hence equal)

 In the set of profinite words

◦aω + b ≠ aω

(their distance is 0.25, because of:

F
b

a,ba



p-adic Metric on Q

 Similar concept in the Number Theory

 For each n≧2, define d’n as

◦d’n(x,y) = n-a
if x-y = b/c na

 where a,b,c ∈ Z and b,c is not divisible by n

 When p is a prime, d‟p is called the p-adic metric



Example (p-adic Metric)

 For each n≧2, define d’n as

◦d’n(x,y) = n-a
if x-y = b/c na

 where a,b,c ∈ Z and b,c is not divisible by n

 d‟10( 12345, 42345 ) = 10-4

 d‟10( 0.33, 0.43 ) = 10+1



Q
R

Qp

Infinite 

Strings

Profinite

Strings

Finite 

Strings

1, 1.4, 1.41, …

 1.41421356…

1, 21, 121, 2121, …

 …21212121 



Theorem [Hunter 1988]

L ⊆ Σ* is regular
if and only if

cl(L)  is clopen in Σ* 

 clopen := closed & open

 closed := complement is open

 S is open := ∀x∈S, ∃ε>0, {y|d(x,y)<ε}⊆S

 cl(S) := unique minimum closed set ⊇ L



Intuition

 L is regular

◦ ⇔

 cl(L) is open

◦ ⇔

 ∀x∈cl(L), ∃ε, ∀y, dmA(x,y)<ε  y∈cl(L)

◦ ⇔

 If cl(L) contains x, it contains all „hard-

to-distinguish-from x‟ profinite strings 

L

x y

ε



(Non-)example

 L = { anbn | n∈nat }

is not regular

 Because

◦aωbω is contained in cl(L)

◦ cl(L) do not contain aωbω+k! for each k

◦ but dmA(a
ωbω, aωbω+k!) ≦ 2-k

L

aωbω



Proof Sketch : clopen⇔regular

 L is Regular ⇒ cl(L) is Clopen

(This direction is less surprising.)

◦ It is trivially closed

◦ Suppose L is regular but cl(L) is not ppen.

◦ Then, ∃x∈cl(L), ∀ε, ∃y∉cl(L), dmA(x,y)<ε

◦ Then, ∀n, ∃x∈L, ∃y∉L, dmA(x,y)<2-n

◦ Then, ∀size-n DFA, ∃x,y that can‟t be separated

◦ Thus, L is not be a regular language.



(not in the paper: just my thought)

Generalize: Regular ⇒ Clopen
(This direction is less surprising. Why?)

Because it doesn’t use any particular 

property of “regular”

 Let

◦ F be a set of predicates stringbool

◦ siz be any function F  nat

◦ dmF(x,y) = 2
-min{siz(f) | f(x)≠f(y)}

 L is F-recognizable

⇒ cl(L) is clopen with dmF



(not in the paper: just my thought)

Generalize: Regular ⇒ Clopen
(This direction is less surprising. Why?)

Because it doesn’t use any particular 

property of “regular”

 E.g.,

◦ dmPA(x,y) = 2
-min{#states of PD-NFA separating x&y}

 L is context-free

⇒ cl(L) is clopen with dmPA

(But this is not at all interesting, because 

any set is clopen in this metric!!)



Proof Sketch: Clopen ⇒ Regular

 Used lemmas:

◦ Σ* is compact

 i.e., if it is covered by an infin union of open sets, 

then it is covered by their finite subfamily, too.

 i.e., every infinite seq has convergent subseq

 The proof relies on the fact: siz-1(n) is finite

◦ Concatenation is continuous in this metric

 i.e., ∀x ∀ε ∃δ, ∀x’, d(x,x’)<δ  d(f(x),f(x’))<ε

 Due to dmA(wx,wy) ≦ dmA(x,y)

 By these lemmas, clopen sets are shown to be 

covered by finite congruence, and hence regular.



Corollary

f :: Σ*  Σ* is IRP

if and only if

f :: Σ*  Σ* is continuous

 continuous :=

∀x ∀ε ∃δ, ∀x’, d(x,x’)<δ  d(f(x),f(x’))<ε

 Known to be equivalent to

f-1( (cl)open ) = (cl)open



“Equational Characterization”

 Main interest of the paper

 Many subclasses of regular languages 

are characterized by

Equations on Profinite Strings



Example

 A regular language L is star-free
(i.e.,  in {∪,∩,￢,・}-closure of fin. langs)

(or equivalently, FO-definable)

if and only if

xω ≡L xω+1

◦ i.e.,  ∀u v x, uxωv∈cl(L) ⇔ uxω+1v∈cl(L)

Corollary:

FO-definability is decidable



Example

 A regular language L is commutative

if and only if

xy ≡L yx
◦ i.e.,  ∀u v x, u xy v∈cl(L) ⇔ u yx v∈cl(L)

Corollary:

Commutativity is decidable



Example

 A regular language L is dense

(∀w,  Σ* w Σ* ∩ L ≠ Φ)

if and only if

{xρ ≡L ρx ≡L ρ,  x ≦L ρ}
◦ where ρ = limn∞ vn,  vn+1=(vn un+1 vn)

(n+1)!

u = {ε, a, b, aa, ab, ba, bb, aaa, …}

◦ i.e.,  ∀u v x, … & uxv∈cl(L) ⇒ uρv∈cl(L)



Theorem [Reiterman 1982]

 If a family (set of languages) F
of regular languages is closed under
◦ intersection, union, complement,

◦ quotient (qa(L) = {x | ax∈L}), and

◦ inverse of homomorphism

if and only if

 It is defined by a set of profinite
equations of the form:  u ≡ v



Other Types of Equations

 [Pin & Gehrke & Grigorieff 2008]



Summary

 Completion by the Profinite metric

dmA(x, y) = 2
-min_automaton(x,y)

is used as a tool to characterize 

(subclasses of) regular languages


