
Coalgebra, Automata, and
Document Synchronization

Kazuhiro Inaba

Reading “Merging Hierarchically-Structured
Documents in Workflow Systems”
[E. Badouel and M. T. Tchendji, CMCS’08]

IPLAS 2009/06/09

• ((All pictures are cited from the authors
presentation slide: http://old-
www.cwi.nl/projects/cmcs08/slides/index.h
tml thanks.))

http://old-www.cwi.nl/projects/cmcs08/slides/index.html
http://old-www.cwi.nl/projects/cmcs08/slides/index.html
http://old-www.cwi.nl/projects/cmcs08/slides/index.html
http://old-www.cwi.nl/projects/cmcs08/slides/index.html
http://old-www.cwi.nl/projects/cmcs08/slides/index.html

≪Problem≫

• Partial views of a (big) document

• Concurrently updated

• How to
merge them?

Approach of this paper

• Use coalgebra (= tree automaton)!

doc

u2u1

view2view1

Set of all doc’s
s.t.

view2(doc’)
= u2

Set of all doc’s
s.t.

view1(doc’)
= u1

inter-
section

!!

Represented
by an

automaton

Represented
by an

automaton

Basic Notions

• Document

• View

– Projection

– Expansion

• Grammar

(Untyped) Document

• Let S be a finite alphabet

– E.g. S = {A,B,C}

• A “document” (over S) is an unranked tree
over S

(Untyped) View

• A “view” is a subset of S

• The “projection associated with a view” is
the function (of type: tree  forest) that

erases all symbols not in the view

(Untyped) Expansion

• The “expansion associated with a view” is
the function (of type: forest  2tree) which

is the inverse of the projection

– Note: the output set is regular!
 they’re represented as a tree automaton

– How precisely? Wait a moment…

Grammar

• In the paper, the authors consider only
“typed” documents.

– Typed = Conformance to a grammar

• A “Grammar” over S is a triple (S , A, P):

– A ∈ S axiom (initial symbol)

– P ⊆ S ×S * set of productions

(Typed) Document

• A grammar G = (S , A, P) corresponds to a
set of trees called “derivation trees”,
defined for each X∈S as follows:

– Der(G, X) = {X(t1,…, tn) |
∃XX1…Xn ∈ P: ∀i: ti∈Der(G,Xi)}

• The members of Der(G, A) are the
document confirming the grammar G

• From now on, we deal with such docs only

Example of a Grammar & a Doc.

(Typed) View

• Same as before

– A “view” ⊆ S, “projection” is an erasure

• “expansion” takes two more parameters

– G = (S, A, P) : Grammar

– X ∈ S : Axiom

• expansion(V, ts, G, X) returns the set of
trees in Der(G,X) whose projection with V
are equal to ts

Example of an Expansion

Top-Down Nodeterministic

Tree Automata

• Tree Automaton A is a tuple <S, Q, δ>:

– S : node labels

– Q : set of states

– δ : Q  2S ×Q* : transition relation

• Grammars are straightforwardly converted
to tree automata: G = (S , A, P) ~~>
– A = (S, Q, δ) where

• Q = S

• δ(q) = {(q, q1 … qn) | qq1…qn ∈ P}

Example

• A = ({A,B}, {q1,q2}, δ)

– δ(q1) = { (A, q1q2), (A, q2q2) }

– δ(q2) = { (B,), (B, q1) }

A

B B

A

B B

A

B A

B B

q1

q2 q2

q1

q2 q2

This tree is
in the set of
trees repr’d
by (A, q1)!

This tree is
not!

(no possible
assignment)

Representing Expansions by TA

• Recall:

– expansion(V, ts, G, X) returns the set of trees
in Der(G,X) whose projection by V are equal
to ts.

– V ⊆ S

– G = (S , P)

Input: V, G=(S, P), ts
Output: the corresponding automaton

• Corresponding automaton is A = (S, Q, δ):

– Q = S ×T T is the list of subtrees of ts

– δ(<s, t>) =

• Φ if s∈V and t≠[s(…)]

• { (s, <s1, t1><s2, t2>…<sn, tn>) |
ss1…sn ∈ P,
t1’ … tn’ = t’

}
if s ∈V and t=[s(t’)]
or s ∉ V and t=t’

Proposition (Correctness)

• Member of expansion(V, ts, G, X)

iff

• Accepted by the automaton A from
the state <X, ts>

Example

• S = {A,B,C}

• G = (S, A, P) where P is:

• V = {A, B}

• ts =

• δ(<A, A(A,B(A,A))>) = {
(A, <C, A,B(A,A))><B,ε>),
(A, <C, A><B, B(A,A))>),
(A, <C, ε><B, A,B(A,A)) >) }

• δ(<C, A,B(A,A))>) = {
(C, <A, A,B(A,A)><C, ε>),
(C, <A, A><C, B(A,A)>),
(C, <A, ε><C, A,B(A,A)>),
(C, <C, A,B(A,A)><C, ε>),
(C, <C, A><C, B(A,A)>),
(C, <C, ε><C, A,B(A,A)>) }

• …

Now, On Tree Automata…

• We can compute

– Emptiness of the represented set

• Coinductively

– Intersection between two sets

• By Product Construction

– (Q, δ) ∩ (P, γ) = (Q×P, β) where

– β((q, p)) =
{ (ζ, (q1,p1)…(qn,pn)) |

(ζ,q1…qn)∈δ(q) and (ζ,p1…pn)∈γ(p) }

Algorithm: “Coherence” check

• Given

– Grammar G = (S, A, P)

– View V1 and Forest ts1

– View V2 and Forest ts2

• Are these two views coherent?
(i.e., can we “merge” them into a single
document that generates the two views
simultaneously?)

expansion(V1,ts1,G,A) ∩ expansion(V2,ts2,G,A) ≠ Φ?

Algorithm: “Synchronization”

• Given

– Grammar G = (S, A, P)

– View V1 and Forest ts1

– View V2 and Forest ts2

• How can we get the merged document?

 If

is a singleton set, that’s it!
Otherwise, ambiguous  error

expansion(V1,ts1,G,A) ∩ expansion(V2,ts2,G,A)

Singleton check
(Not in the paper…)

• Step 1 (Cleaning): A ~~> Acl

– Eliminate all “failure” states and transitions

• Step 2 (Thinning): Acl ~~> Acl,th

– Determinize the automaton by dropping
nondeterministic rules

• Step 3 (Equivalence Check) Acl =? Acl,th

– Check Bisimilarity

Example 1

• ADDRESSBOOK  @

• @  ε | PERSON @

• PERSON  NAME ADDRESS TEL

• NAME  …, ADDRESS  …, TEL  …

• V1 = {NAME}

• V2 = {TEL}

• Example of a document: ADDRESSBOOK[@[

– PERSON[

• NAME[…] ADDRESS[…] TEL[…]
–]@[

– PERSON[

• NAME[…] ADDRESS[…] TEL[…]
–]@[]]]]

• expansion(V1, NAME[…]NAME[…])
is consistent with

expansion(V2, TEL[…]TEL[…])
but not with

expansion(V2, TEL[…]TEL[…]TEL[…])

Example 2

• ADDRESSBOOK  @

• @  ε | PERSON @

• PERSON  NAME ADDRESS TEL #

• #  ε | TEL #

• NAME  …, ADDRESS  …, TEL  …

• V1 = {NAME}

• V2 = {TEL}

• Example of a document: ADDRESSBOOK[@[

– PERSON[

• NAME[…] ADDRESS[…] TEL[…] #[]

–]@[

– PERSON[

• NAME[…] ADDRESS[…] TEL[…] #[TEL[…] #[]]

–]@[]]]]

• expansion(V1, NAME[…]NAME[…])
is consistent with

expansion(V2, TEL[…]TEL[…])
and also with

expansion(V2, TEL[…]TEL[…]TEL[…])

Ambiguity

• Example of a document: ADDRESSBOOK[@[

– PERSON[

• NAME[…] ADDRESS[…] #[TEL[…] #[]]

–]@[

– PERSON[

• NAME[…] ADDRESS[…] #[TEL[…] #[TEL[…] #[]]

–]@[]]]]

• Ambiguity in the synchronization of
expansion(V1, NAME[…]NAME[…])

with
expansion(V2, TEL[…]TEL[…]TEL[…])

How to resolve ambiguity

• Be more careful in choosing views

– Set of views that “covers” the whole structure

• Such as

– V1 = {NAME}

– V2 = {PERSON, TEL}

or

– V1 = {PERSON, NAME}

– V2 = {TEL, #}

etc.

“Static” Singleton Checking?

• How can the merging system support
users to choose appropriate views?

• For example, Given a set of views,
can we check whether they cause
ambiguity or not?

 Undecidable Problem

(reduces to the ambiguity of CFG)

– (No clear solution is given in the paper…)

Summary

• Synchronization of multiple (edited) views
can be computed by using tree automaton

– Compute inverse-image of the view

– Compute intersection, emptiness, & singularity

• Further topic (in the paper, but not in this presentation)

– “To-be-written” node

• For each symbol X in the grammar, add X and Xε

• Synchronizer allows X in u2 to occur at X position
in u1, etc…

APPENDIX:

Automata as Coalgebra

• J.J.M.M. Rutten,
“Automata and Coinduction (An Exercise
in Coalgebra)”, CONCUR 1998

– The classical theory of deterministic automata is presented in
terms of the notions of homomorphism and bisimulation,
which are the cornerstones of the theory of (universal) coalgebra.
This leads to a transparent and uniform presentation of automata
theory and yields some new insights, amongst which coinduction
proof methods for language equality and language inclusion. At
the same time, the present treatment of automata theory may
serve as an introduction to coalgebra.

