
XML Transformation Language

Based on

Monadic Second Order Logic

Kazuhiro Inaba

Haruo Hosoya

University of Tokyo

PLAN-X 2007

Monadic Second-order Logic

(MSO)

 First-order logic extended with “monadic

second-order variables” ranging over sets of

elements

∀A.(A≠φ ⇒ ∃x. (x in A & ∀y.(y in A ⇒ x≦y)))e.g.

Variables

Denoting Sets

Set Operations

Monadic Second-order Logic

(MSO)

 As a foundation of XML processing

 XML Query languages provably MSO-

equivalent in expressiveness (Neven 2002,

Koch 2003)

 Theoretical models of XML Transformation

with MSO as a sub-language for node

selection (Maneth 1999, 2005)

Monadic Second-order Logic

(MSO)

 Although used in theoretical researches …

 No actual language system exploiting MSO
formulae themselves for querying XML

 Why?

 Little investigation on advantages of using
MSO as a construct for XML programming

 High time complexity for processing MSO
(hyper-exponential in the worst-case), which
makes practical implementation hard

What We Did

 Bring MSO into a practical language system

for XML processing!

 Show the advantages of using MSO formulae

as a query language for XML

 Design an MSO-based template language for

XML transformation

 Establish an efficient implementation strategy

of MSO

MTran : http://arbre.is.s.u-tokyo.ac.jp/~kinaba/MTran/

Outline

 Why MSO Queries?

 MSO-Based Transformation Language

 Efficient Strategy for Processing MSO

Why MSO Queries?

MSO’s Advantages

 No explicit recursions needed for deep matching

 Don’t-care semantics to avoid mentioning irrelevant nodes

 N-ary queries are naturally expressible

 All regular queries are definable

MSO XPath

RegExp

Patterns

(XDuce)

Monadic

Datalog

NoRecursion ○ ○

Don’t-care ○ ○ ○

N-ary ○ ○

Regularity ○ ○ ○

Why MSO?

(1) No Explicit Recursion

 MSO does not require recursive definition for

reaching nodes in arbitrary depth.

 “Select all elements in the input XML”

x in

MSO XPath
RegExp

Patterns

Monadic

Datalog

NoRecursion ○ ○

Why MSO?

(2) Don’t-care Semantics

 No need to mention irrelevant nodes in the query

 MSO

 Regular Expression Patterns

• Requires specification for whole tree structures

ex1 y. x/y & y in <date>

MSO XPath
RegExp

Patterns

Monadic

Datalog

Don’t-care ○ ○ ○

x as ~[Any, date[Any], Any]

Why MSO?

(3) N-ary Queries

 Formulae with N free variables define N-ary queries

 MSO

 XPath

• Limited to 1-ary (absolute path) and 2-ary (relative path)

queries

ex1 p. (p/x:<foo> & p/y:<bar> & p/z:<buz>)

MSO XPath
RegExp

Patterns

Monadic

Datalog

N-ary ○ ○

Why MSO?

(4) Regularity

 MSO can express any “regular” queries.

 i.e. the class of all queries that are representable

by finite state tree automata

MSO XPath
RegExp

Patterns

Monadic

Datalog

Regularity ○ ○ ○

Lack of regularity is not just a sign of theoretical

weakness, but has a practical impact…

Example:

Generating a Table of Contents

 Input: XHTML

 Essentially, a list of

headings:

<h1>, <h2>, <h3>, …

 Output

 Tree structure

<html><body>
<h1> <p> <h2> <p>
<p> <h2> <p> <h3>
<h1> <p> <h2> <p>
<p> <p> <h3> <h1>
<p> <p> <p> <p>

</body></html>

 h1

 h2
 h2

 h3

 h1

 h2

Example:

Generating a Table of Contents

 Queries required in this transformation

 Gather all <h1> elements

 For each <h1> element x,
• Gather all subheading of x, that is,

• All <h2> elements y that

• Appears after x, and

• No other <h1>s appear
between x and y

• For each <h2>, …
• …

<body>
<h1>
<h2>
<h3>
<h1>
<h2>
<h3>
<h2>
<h1>
<h2>
</body>

Example:

Generating a Table of Contents

 Straightforward in MSO

y in <h2>
& x < y
& all1 z.(z in <h1> => ~(x<z & z<y))

 <h2> element y that

 Appears after x, and

 No other <h1>s appear between x and y.

Each condition is expressible in, e.g., XPath 1.0,

but combining them is difficult.

(Due to the lack of universal quantification.)

Example:

LPath[Bird et al., 2005] Linguistic Queries

A linguistic query requiring “immediately

following” relation

S

VP

N
“today”

NP
PP

N
“dog”

NP

Det
“a”

Prep
“with”

NP

N
“man”

Adj
“old”

Det
“the”

N
“I”

V
“saw”

Input:

 Parse tree of a statement

in a natural language

Query:

 “Select all elements y that

follow after x in some

proper analysis…”

Example:

LPath[Bird et al., 2005] Linguistic Queries

 Proper analysis

 A set P of elements such that

• Every leaf node in the tree has exactly one

ancestor contained in P

S

VP

N
“today”

NP
PP

N
“dog”

NP

Det
“a”

Prep
“with”

NP

N
“man”

Adj
“old”

Det
“the”

N
“I”

V
“saw”

Example:

LPath[Bird et al., 2005] Linguistic Queries

 Straightforward in MSO

pred is_leaf(var1 x) =
~ex1 y.(x/y);

pred proper_analysis(var2 P) =
all1 x.(is_leaf(x) =>
ex1 p.(p//x & p in P &
all1 q.(q//x & q in P => p=q)));

 Every leaf node in the tree has exactly

one ancestor contained in P.

Example:

LPath[Bird et al., 2005] Linguistic Queries

 “Immediately follows” query in MSO

pred follow_in(var2 P, var1 x, var1 y) =
x in P & y in P
& ~ ex1 z. (z in P & x<z & z<y);

ex2 P. (proper_analysis(P) & follow_in(P,x,y))

 “Select all elements y that follows after x in

some proper analysis”

Second-order variable!

MTran: MSO-Based

Transformation Language

MTran: Overview

 “Select and transform” style templates
(similar to XSLT)

 Select nodes with MSO queries

 Apply templates to each selected node

 Question:

 “What is a design principle for templates that
fully exploits the power of MSO?”

• Simply adopting XSLT templates is not our answer

MTran: Overview

 MSO does not require explicit recursion

 Natural design: transformation also does not

require explicit recursion

 MSO enables us to write N-ary queries

 Select a target node depending on N-1

previously selected nodes

• XSLT uses XPath (binary queries) where

the selection depends only on a single

“context node”

1. No-recursion in Templates

 “Visit” template

 Locally transform each node that matched φ(x)

 Reconstruct whole tree, preserving unmatched part

{ :: :: }

x

x

x

visit x Φ(x) Subtemplate

1. No-recursion in Templates

 E.g. wrap every <Traget> element by a <Mark> tag

{ :: :: }

x

x

x

Mark

x

Mark

x
Mark

x

Mark

x

Mark

x

Mark

x

visit x x in <Target> Mark[x]

<Root>
<Target/>
<Target>
<N><Target/></N>

</Target>
</Root>

<Root>
<Mark><Target/></Mark>
<Mark><Target>
<N><Mark><Target/></Mark></N>

</Target></Mark>
</Root>

1. No-recursion in Templates

 “Gather” drops all unmatched part, and

matched part are listed.

{gather x :: x in <Target> :: Mark[x]}

Mark

x

Mark

x

Mark

x
Mark

x

Mark

x

Mark

x

x

x

x

2. Nested Templates

 Nested query can refer outer variables

{visit x :: x in <textBox> ::
{visit y from x

:: textnode(y) ::
span[

@style[{gather z::ex1 p.(x/p/y & p/@style/z)::z}]
y]
:: y in :: }}

<Document>
<textBox>

Hi!

</textBox>
</Document>

<Document>
<textBox>

Hi!

</textBox>
</Document>

Efficient Strategy for

Processing MSO

MSO Evaluation

 We follow the usual 2-step strategy…

① Compile a formula to a tree automaton

② Run queries using the automaton

Our Approach

① Compilation

• Exploit MONA[Klarlund et al.,1999] system

• Our contribution: experimental results in the
context of XML processing

② Querying by Tree Automata

• Similar to Flum-Frick-Grohe [01] algorithm
• O(|input| + |output|)

• Our contribution: simpler implementation via
partially lazy evaluation of set operations.

Defining Queries

by Tree Automata

 An automaton runs on trees with alphabet
Σ×{0,1}N defines an N-ary query over
trees with alphabet Σ

 A = (Σ×{0,1}N, Q, δ, q0, F)

 Σ×{0,1}N : alphabet

 Q : the set of states

 δ : Q×Q×Σ ×{0,1}N → Q

 q0 : initial state

 F : accepting states

Defining Queries

by Tree Automata

“A pair (p,q) in tree T is an answer for the

binary query defined by an automaton A“

⇔ “The automaton A accepts a marked tree T’,

(augmentation of T with “1” at p and q)”

X

Y Z

W V

X00

Y10 Z00

W00 V01

p

q

T T’

Algorithms for Queries in

Tree Automata

 Naïve algorithm

 For each tuple, generate a corresponding

marked tree, and run the automaton

 O(|input|N+1)

Algorithms for Queries in

Tree Automata

 Naïve algorithm usings “sets”

 For each node p and state q, calculate mp(q):

• The set of tuples of nodes such that if they’re

marked, the automaton reaches the state q at the

node p

• ∪{mroot(q) | q in F} is the answer

 mp(q) is calculated in bottom-up manner

Y

W V
ml mr

mp(q) =

∪{ ml(q1)×{p}×mr(q2) | δ(q1, q2, Y1)=q }

∪

∪{ ml(q1) × {} × mr(q2) | δ(q1, q2, Y0)=q }

p

Flum-Frick-Grohe Algorithm

 Redundancies in naïve “set” algorithm

 Calculation of sets that do not contribute to the final

result (mroot(q) for q in F)

 Calculation on unreachable states

• States that cannot be reached for any marking patterns

 Flum-Frick-Grohe algorithm avoids these

redundancies by 3-pass algorithm

 Detects two redundancies in 2-pass precalculations

 Runs the “set” algorithm, avoiding those

redundancies using results from the first 2-passes

Our Approach

 Eliminate the redundancies by

simply implementing naive “set” algorithm by

Partially Lazy Evaluation of Set Operations

 Delays set operations (i.e., product and

union) until it is really required

 …except the operations over empty sets

type „a set = EmptySet
| NonEmptySet of „a neset

type „a neset = Singleton of „a
| Union of „a neset * „a neset
| Product of „a neset * „a neset

Our Approach

 2-pass algorithm

 Run “set” algorithm using the partially lazy operations

 Actually evaluate the lazy set

 Easier implementation

 Implementation of partially lazy set operations is
straightforward

 Direct implementation of “set” algorithm is also
straightforward (compared to the one containing
explicit avoidance of redundancies)

Experimental Results

 Experiments on 4 examples

 Compilation Time (in seconds)

 Execution Time for 3 different sizes of documents

Compile 10KB 100KB 1MB

ToC 0.970 0.038 0.320 3.798

LPath 0.655 0.063 0.429 4.050

MathML 0.703 0.236 1.574 16.512

RelaxNG 0.553 0.068 0.540 5.684

On 1.6GHz AMD Turion Processor, 1GB RAM, (sec). Units are in seconds.

Related Work

Related Work

(MSO-based Transformation)

 DTL [Maneth and Neven 1999]

 TL [Maneth, Perst, Berlea, and Seidl 2005]

 Adopt MSO as the query language.

 Aim at finding theoretical properties for

transformation models (such as type checking)

 MTran aims to be a practical system.

 Investigation on: the design of transformation

templates and the efficient implementation

Related Work

(MSO Query Evaluation)

 Query Evaluation via Tree-Decompositions [Flum,
Frick, and Grohe 2001]

 Basis of our algorithm

 Our contribution is “partially lazy operations on
sets”, which allows a simpler implementation

 Several other researches in this area… [Neven
and Bussche 98] [Berlea and Seidl 02] [Koch 03]
[Niehren, Planque, Talbot and Tison 05]

 Only restricted cases of MSO treated, or have
higher complexity

Future Work

 Exact Static Type Checking

 Label Equality

 “The labels of x and y are equal” is not

expressible in MSO

• But is useful in context of XML processing (e.g.,

comparison between @id and @idref attribute)

 Can we extend MSO allowing such formulae,

yet while maintaining the efficiency?

Thank you for listening!

 Implementation available online:

 http://arbre.is.s.u-tokyo.ac.jp/~kinaba/MTran/

