XML Transformation Language
Based on
Monadic Second Order Logic

Kazuhiro Inaba
Haruo Hosoya

University of Tokyo

PLAN-X 2007
Monadic Second-order Logic (MSO)

- First-order logic extended with “monadic second-order variables” ranging over sets of elements

\[\forall A. (A \neq \varnothing \Rightarrow \exists x. (x \in A \land \forall y.(y \in A \Rightarrow x \leq y))) \]

- Variables Denoting Sets
- Set Operations
Monadic Second-order Logic (MSO)

- As a foundation of XML processing
 - XML Query languages provably MSO-equivalent in expressiveness (Neven 2002, Koch 2003)
 - Theoretical models of XML Transformation with MSO as a sub-language for node selection (Maneth 1999, 2005)
Monadic Second-order Logic (MSO)

- Although used in theoretical researches …
 - No actual language system exploiting MSO formulae themselves for querying XML

- Why?
 - Little investigation on advantages of using MSO as a construct for XML programming
 - High time complexity for processing MSO (hyper-exponential in the worst-case), which makes practical implementation hard
What We Did

- Bring MSO into a practical language system for XML processing!
 - Show the advantages of using MSO formulae as a query language for XML
 - Design an MSO-based template language for XML transformation
 - Establish an efficient implementation strategy of MSO

MTran : http://arbre.is.s.u-tokyo.ac.jp/~kinaba/MTran/
Outline

- Why MSO Queries?
- MSO-Based Transformation Language
- Efficient Strategy for Processing MSO
Why MSO Queries?
MSO’s Advantages

- No explicit recursions needed for deep matching
- Don’t-care semantics to avoid mentioning irrelevant nodes
- N-ary queries are naturally expressible
- All regular queries are definable

<table>
<thead>
<tr>
<th></th>
<th>MSO</th>
<th>XPath</th>
<th>RegExp Patterns (XDuce)</th>
<th>Monadic Datalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoRecursion</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Don’t-care</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>N-ary</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Regularity</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Why MSO?

(1) No Explicit Recursion

- MSO does not require recursive definition for reaching nodes in arbitrary depth.
 - “Select all elements in the input XML”

<table>
<thead>
<tr>
<th></th>
<th>MSO</th>
<th>XPath</th>
<th>RegExp Patterns</th>
<th>Monadic Datalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoRecursion</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
Why MSO?

(2) Don’t-care Semantics

- No need to mention irrelevant nodes in the query
 - MSO

```
ex1 y. x/y & y in <date>
```

- Regular Expression Patterns
 - Requires specification for whole tree structures

```
x as ~[Any, date[Any], Any]
```

<table>
<thead>
<tr>
<th></th>
<th>MSO</th>
<th>XPath</th>
<th>RegExp Patterns</th>
<th>Monadic Datalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t-care</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>
Why MSO?

(3) N-ary Queries

- Formulae with N free variables define N-ary queries
 - MSO

  ```
  ex1 p. (p/x:<foo> & p/y:<bar> & p/z:<buz>)
  ```

- XPath
 - Limited to 1-ary (absolute path) and 2-ary (relative path) queries

<table>
<thead>
<tr>
<th></th>
<th>MSO</th>
<th>XPath</th>
<th>RegExp Patterns</th>
<th>Monadic Datalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-ary</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Why MSO?

(4) Regularity

- MSO can express any “regular” queries.
 - i.e. the class of all queries that are representable by finite state tree automata

Lack of regularity is not just a sign of theoretical weakness, but has a practical impact…

<table>
<thead>
<tr>
<th></th>
<th>MSO</th>
<th>XPath</th>
<th>RegExp Patterns</th>
<th>Monadic Datalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularity</td>
<td>O</td>
<td></td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Example: Generating a Table of Contents

- **Input:** XHTML
 - Essentially, a list of headings:
 <h1>, <h2>, <h3>, ...

- **Output**
 - Tree structure

 h1

 h2
 h2

 h3

 h1

 h2

Example: Generating a Table of Contents

Queries required in this transformation

- Gather all <h1> elements
- For each <h1> element x,
 - Gather all subheading of x, that is,
 - All <h2> elements y that
 - Appears after x, and
 - No other <h1>s appear between x and y
 - For each <h2>, …
 - …
Example:
Generating a Table of Contents

- Straightforward in MSO

 - `<h2>` element `y` that
 - Appears after `x`, and
 - No other `<h1>`s appear between `x` and `y`.

Each condition is expressible in, e.g., XPath 1.0, but combining them is difficult. (Due to the lack of universal quantification.)
Example: LPath\cite{Bird et al., 2005} Linguistic Queries

A linguistic query requiring “immediately following” relation

Input:
- Parse tree of a statement in a natural language

Query:
- “Select all elements y that follow after x in some proper analysis…”
Example: LPath [Bird et al., 2005] Linguistic Queries

- Proper analysis
 - A set P of elements such that
 - Every leaf node in the tree has exactly one ancestor contained in P
Example:

LPath [Bird et al., 2005] Linguistic Queries

- Straightforward in MSO

- Every leaf node in the tree has exactly one ancestor contained in P.

```
pred is_leaf(var1 x) = ~ex1 y.(x/y);

pred proper_analysis(var2 P) =
  all1 x.(is_leaf(x) =>
    ex1 p.(p//x & p in P &
      all1 q.(q//x & q in P => p=q)));
```
Example: \texttt{LPath} [Bird et al., 2005] Linguistic Queries

- “Immediately follows” query in MSO

 “Select all elements y that follows after x in some proper analysis”

\[\text{pred follow_in(var2 } P, \text{ var1 } x, \text{ var1 } y) = \]
\[x \text{ in } P \& y \text{ in } P \]
\[\& \sim \text{ ex1 } z. \ (z \text{ in } P \& x<z \& z<y); \]
\[\text{ex2 } P. \ (\text{proper_analysis}(P) \& \text{follow_in}(P,x,y)) \]

Second-order variable!
MTran: MSO-Based Transformation Language
MTran: Overview

“Select and transform” style templates (similar to XSLT)
- Select nodes with MSO queries
- Apply templates to each selected node

Question:
- “What is a design principle for templates that fully exploits the power of MSO?”
 - Simply adopting XSLT templates is not our answer
MTran: Overview

- MSO does not require explicit recursion
 - Natural design: transformation also does not require explicit recursion
- MSO enables us to write N-ary queries
 - Select a target node depending on N-1 previously selected nodes
 - XSLT uses XPath (binary queries) where the selection depends only on a single “context node”
1. No-recursion in Templates

- “Visit” template
 - Locally transform each node that matched $\varphi(x)$
 - Reconstruct whole tree, preserving unmatched part

\[
\{ \text{visit } x :: \varphi(x) :: \text{Subtemplate} \}
\]
1. No-recursion in Templates

- E.g. wrap every `<Target>` element by a `<Mark>` tag

```{visit x :: x in <Target> :: Mark[x] }```

```<Root>
 <Target/>
 <Target>
 <N><Target/></N>
 </Target>
</Root>```

```<Root>
  <Mark><Target/></Mark>
  <Mark><Target>
    <N><Mark><Target/></Mark></N>
  </Target></Mark>
</Root>```
1. No-recursion in Templates

“Gather” drops all unmatched part, and matched part are listed.

\{\text{gather} \ x :: x \ \text{in} \ <\text{Target}> :: \text{Mark}[x]\}
2. Nested Templates

- Nested query can refer outer variables

```xml
{visit x :: x in <textBox> ::
 {visit y from x :: textnode(y) ::
 span[
 @style[{gather z::ex1 p.(x/p/y & p/@style/z)::z}]
 y]
 :: y in :: }}
```

```xml
<Document>
 <textBox>
 Hi!
 </textBox>
</Document>

<Document>
 <textBox>
 Hi!
 </textBox>
</Document>
```
Efficient Strategy for Processing MSO
MSO Evaluation

- We follow the usual 2-step strategy…
  ① Compile a formula to a tree automaton
  ② Run queries using the automaton
Our Approach

① Compilation
- Exploit MONA\cite{Klarlund2019} system
- Our contribution: experimental results in the context of XML processing

② Querying by Tree Automata
- Similar to Flum-Frick-Grohe \cite{01} algorithm
  - $O(|\text{input}| + |\text{output}|)$
- Our contribution: simpler implementation via partially lazy evaluation of set operations.
Defining Queries by Tree Automata

- An automaton runs on trees with alphabet $\Sigma \times \{0,1\}^N$ defines an N-ary query over trees with alphabet $\Sigma$

- $A = (\Sigma \times \{0,1\}^N, Q, \delta, q_0, F)$
  - $\Sigma \times \{0,1\}^N$: alphabet
  - $Q$: the set of states
  - $\delta$: $Q \times Q \times \Sigma \times \{0,1\}^N \rightarrow Q$
  - $q_0$: initial state
  - $F$: accepting states
Defining Queries by Tree Automata

“A pair \((p,q)\) in tree \(T\) is an answer for the binary query defined by an automaton \(A\)"

⇔ “The automaton \(A\) accepts a marked tree \(T'\), (augmentation of \(T\) with “1” at \(p\) and \(q\))”
Algorithms for Queries in Tree Automata

- Naïve algorithm
  - For each tuple, generate a corresponding marked tree, and run the automaton
  - $O(|\text{input}|^{N+1})$
Algorithms for Queries in Tree Automata

- Naïve algorithm using “sets”
  - For each node \( p \) and state \( q \), calculate \( m_p(q) \):
    - The set of tuples of nodes such that if they’re marked, the automaton reaches the state \( q \) at the node \( p \)
    - \( \bigcup \{ m_{\text{root}}(q) \mid q \in F \} \) is the answer
  - \( m_p(q) \) is calculated in bottom-up manner

\[
\begin{align*}
  m_p(q) &= \bigcup \{ m_l(q_1) \times \{ p \} \times m_r(q_2) \mid \delta(q_1, q_2, Y1)=q \} \\
         &\quad \bigcup \{ m_l(q_1) \times \{ \} \times m_r(q_2) \mid \delta(q_1, q_2, Y0)=q \}
\end{align*}
\]
Flum-Frick-Grohe Algorithm

- Redundancies in naïve “set” algorithm
  - Calculation of sets that do not contribute to the final result \( m_{\text{root}}(q) \) for \( q \) in \( F \)
  - Calculation on unreachable states
    - States that cannot be reached for any marking patterns
- Flum-Frick-Grohe algorithm avoids these redundancies by 3-pass algorithm
  - Detects two redundancies in 2-pass precalculations
  - Runs the “set” algorithm, avoiding those redundancies using results from the first 2-passes
Our Approach

- Eliminate the redundancies by simply implementing naive “set” algorithm by Partially Lazy Evaluation of Set Operations
  - Delays set operations (i.e., product and union) until it is really required
  - ...except the operations over empty sets

```ocaml
type 'a set = EmptySet
 | NonEmptySet of 'a neset

type 'a neset = Singleton of 'a
 | Union of 'a neset * 'a neset
 | Product of 'a neset * 'a neset
```
Our Approach

- **2-pass algorithm**
  - Run “set” algorithm using the partially lazy operations
  - Actually evaluate the lazy set

- **Easier implementation**
  - Implementation of partially lazy set operations is straightforward
  - Direct implementation of “set” algorithm is also straightforward (compared to the one containing explicit avoidance of redundancies)
Experimental Results

- Experiments on 4 examples
  - Compilation Time (in seconds)
  - Execution Time for 3 different sizes of documents

<table>
<thead>
<tr>
<th></th>
<th>Compile</th>
<th>10KB</th>
<th>100KB</th>
<th>1MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToC</td>
<td>0.970</td>
<td>0.038</td>
<td>0.320</td>
<td>3.798</td>
</tr>
<tr>
<td>LPath</td>
<td>0.655</td>
<td>0.063</td>
<td>0.429</td>
<td>4.050</td>
</tr>
<tr>
<td>MathML</td>
<td>0.703</td>
<td>0.236</td>
<td>1.574</td>
<td>16.512</td>
</tr>
<tr>
<td>RelaxNG</td>
<td>0.553</td>
<td>0.068</td>
<td>0.540</td>
<td>5.684</td>
</tr>
</tbody>
</table>

On 1.6GHz AMD Turion Processor, 1GB RAM, (sec). Units are in seconds.
Related Work
Related Work
(MSO-based Transformation)

- DTL [Maneth and Neven 1999]
- TL [Maneth, Perst, Berlea, and Seidl 2005]
  - Adopt MSO as the query language.
  - Aim at finding theoretical properties for transformation models (such as type checking)
- MTran aims to be a practical system.
  - Investigation on: the design of transformation templates and the efficient implementation
Related Work (MSO Query Evaluation)

- Query Evaluation via Tree-Decompositions [Flum, Frick, and Grohe 2001]
  - Basis of our algorithm
  - Our contribution is “partially lazy operations on sets”, which allows a simpler implementation

- Several other researches in this area... [Neven and Bussche 98] [Berlea and Seidl 02] [Koch 03] [Niehren, Planque, Talbot and Tison 05]
  - Only restricted cases of MSO treated, or have higher complexity
Future Work

- Exact Static Type Checking
- Label Equality

  - “The labels of $x$ and $y$ are equal” is not expressible in MSO
    - But is useful in context of XML processing (e.g., comparison between @id and @idref attribute)

  - Can we extend MSO allowing such formulae, yet while maintaining the efficiency?
Thank you for listening!

- Implementation available online:
  - http://arbre.is.s.u-tokyo.ac.jp/~kinaba/MTran/