
Multi-Return

Macro Tree Transducers

Kazuhiro Inaba

Haruo Hosoya

University of Tokyo

PLAN-X 2008, San Francisco

Models of Tree Translation

(Top-down) Tree Transducer (TOP)

[Rounds/Thatcher, 70’s]

Finite set of relations from a tree to a tree

Defined by structural (mutual) recursion on the

input tree

<q, bin(x1,x2)> → fst(<q,x1>, <p,x2>)
<q, leaf()> → leaf()

<p, bin(x1,x2)> → snd(<q,x1>, <p,x2>)
<p, leaf()> → leaf()

<q, bin(x1,x2)> → fst(<q,x1>, <p,x2>)
<q, leaf()> → leaf()

<p, bin(x1,x2)> → snd(<q,x1>, <p,x2>)
<p, leaf()> → leaf()

bin

bin bin

bin leaf

leaf leaf

leaf leaf

fst

fst snd

fst leaf

leaf leaf

leaf leaf

Models of Tree Translation

Macro Tree Transducer (MTT)

[Engelfriet/Vogler 85]

Tree Transducer + Accumulating parameters

Strictly more expressive than TOP

<q, bin(x1,x2)>(y) → bin(<q,x1>(1(y)),
<q,x2>(2(y)))

<q, leaf()> (y) → y

<q, bin(x1,x2)>(y) → bin(<q,x1>(1(y)),
<q,x2>(2(y)))

<q, leaf()> (y) → y

bin

bin bin

bin leaf

leaf leaf

leaf leaf

bin

bin bin

bin 2

1 2

1 2

1

1

leaf

1

1

leaf

1

leaf

2

leaf

2

leaf

Multi-Return Macro Tree Transducer

[Our Work]

Macro Tree Transducer + Multiple return values

<q, bin(x1,x2)>(y) → let (z1,z2) = <q,x1>(1(y)) in
let (z3,z4) = <p,x2>(2(y)) in
(bin(z1,z3), fst(z2,z4))

<q, leaf()> (y) → (leaf(), y)

<p, bin(x1,x2)>(y) → let (z1,z2) = <q,x1>(1(y)) in
let (z3,z4) = <p,x2>(2(y)) in
(bin(z1,z3), snd(z2,z4))

<p, leaf()> (y) → (leaf(), y)

Outline

Why Multi-Return?

Definition of Multi-Return MTT

Expressiveness of Multi-Return MTT

Deterministic case

Nondeterministic case

Why Multi-Return?

Why Multi-Return?

MTT is not symmetric

can pass multiple tree-fragments from a parent

to the children via accumulation parameters

<q0, a(x)> → <q1,x>(some(tree,here),
other(tree,here))

<q1, b(x)>(y1,y2) → use(y1, and(y2), here)

Why Multi-Return?

MTT is not symmetric

can not pass multiple tree-fragment from a child

to the parent

Multi-Return MTT can:

<q0, a(x)> → can(use(<q1,x>), here)

<q1, b(x)> → one(tree)

<q0, a(x)> → let (z1,z2) = <q1,x> in
can(use(z1), and(z2), here)

<q1, b(x)> → (one(tree), two(tree))

Inefficiency caused by the lack of child-to-

parent multiple tree passing

Gather all subtrees with root node labeled

“a” and all subtrees labeled “b”
pair

cons

cons

cons

nil

a
a a

b

b

cons

cons

nil

Normal MTT realizing this translation must

traverse the input tree twice

For gathering “a” and gathering “b”

No way to pass two intermediate lists from child

to parent!

<q0, root(x)> → pair(<get_a,x>(nil()),
<get_b,x>(nil()))

<get_a, a(x)>(y) → cons(a(x), <get_a,x>(y))
<get_a, b(x)>(y) → <get_a, x>(y)
…
<get_b, a(x)>(y) → <get_b, x>(y)
<get_b, b(x)>(y) → cons(b(x), <get_b,x>(y))

Multi-Return MTT realizing this translation

must traverse the input tree twice

<q0, root(x)> → let (z1,z2) = <get,x>(nil(),nil()) in
pair(z1, z2)

<get, a(x)>(ya,yb) → let (z1,z2) = <get,x>(ya,yb) in
(cons(a(x),ya), yb)

<get, b(x)>(ya,yb) → let (z1,z2) = <get,x>(ya,yb) in
(ya, cons(b(x),yb))

Definition of

(Multi-Return) MTT

Macro Tree Transducer (MTT)

A MTT is a tuple consisting of

Q : Set of states

q0 : Initial state

Σ : Set of input alphabet

Δ : Set of output alphabet

R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → rhs

rhs ::= δ(rhs, …, rhs)
| <q, xi>(rhs, …, rhs)
| yi

Macro Tree Transducer (MTT)

A MTT is defined to be

Deterministic if for every pair of q∈Q, σ∈Σ,

there exists at most one rule of the form

<q,σ(…)>(…) → …

Nondeterministic otherwise

Call-by-Value (Inside-Out) Evaluation

Arguments are evaluated first, before function

calls <q1, a(x)>() → <q2,x>(<q3,x>())
<q2, a(x)>(y)→ b(y, y)
<q3, a(x)>() → c()
<q3, a(x)>() → d() <q1, a(a(c()))> ⇒

b(c(),c()) or b(d(),d())

Multi-Return Macro Tree Transducer

(mr-MTT)

A mr-MTT is a tuple consisting of

Q : Set of states

q0 : Initial state

Σ : Set of input alphabet

Δ : Set of output alphabet

R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → rhs

rhs ::= (let (z1,..zn) = <q,xi>(t,…,t) in)* (t,…,t)
t ::= δ(t,…,t) | yi | zi

Multi-Return Macro Tree Transducer

(mr-MTT)

A mr-MTT is defined to be

Deterministic if for every pair of q∈Q, σ∈Σ,

there exists at most one rule of the form

<q,σ(…)>(…) → …

Nondeterministic otherwise

Call-by-Value (Inside-Out) Evaluation

Arguments are evaluated first, before function

calls

Expressiveness

Question

Are multi-return MTTs more

expressive than single-return MTTs?

(Is there any translation that can be

written in mr-MTT but not in MTT?)

Answer

Deterministic mr-MTTs are equal in

expressiveness to normal MTTs

In other words, every deterministic mr-MTT can

be simulated by a normal MTT

Nondeterministic mr-MTTs are strictly

more expressive than normal MTTs

Proof Sketch (Deterministic Case)

A state returning n-tuples of trees can be

split into n states returning a single tree

<q,…>(…)→let (z1,z2) = <q,x> in (a(z1,z2), b(z2,z1))

<q_1,…>(…) → let z1 = <q_1,x> in
let z2 = <q_2,x> in a(z1,z2)

<q_2,…>(…) → let z1 = <q_1,x> in
let z2 = <q_2,x> in b(z2,z1)

<q_1,…>(…) → a(<q_1,x>, <q_2,x>)
<q_2,…>(…) → b(<q_2,x>, <q_1,x>)

Nondeterministic case…

State-splitting may change the behavior

<q0, node(x)>
→ let (z1,z2) = <q,x> in

bin(z1,z2)
<q, leaf()> → (a(), a())
<q, leaf()> → (b(), b())

<q0, node(x)>
→ bin(<q_1,x>, <q_2,x>)

<q_1, leaf()> → a()
<q_2, leaf()> → a()
<q_1, leaf()> → b()
<q_2, leaf()> → b()

bin

a a

bin

b b

bin

a a

bin

b b

bin

b a

bin

a b

Nondeterministic case…

 In fact, there is no general way to simulate

a nondeterministic mr-MTT in a normal

MTT

Example of such translation ⇒ “twist”

Nondeterministically translates one input string

sss…ss
of length n to two string of the same length:

- one consists of symbols a and b, and

- the other consists of symbols A and B
such that the outputs are being reversal of each other.

“twist”

root

s

s

z

root

a

a

e

A

A

E

root

a

b

e

B

A

E

root

b

a

e

A

B

E

root

b

b

e

B

B

E

“twist” in Multi-Return MTT

<q, root(x)>→ let (z1,z2) = <p,x>(E()) in
root(z1, z2)

<p, s(x)>(y)→ let (z1,z2) = <p,x>(A(y)) in
(a(z1), z2)

<p, s(x)>(y)→ let (z1,z2) = <p,x>(B(y)) in
(b(z1), z2)

<p, z>(y) → (e(), y)

How to prove the inexpressibility in MTT?

Known proof techniques
Height Property

Size Property

Output Language

…

… all fails here.

→ Long and involved proof specialized for
the “twist” translation

Proof Sketch (Inexpressibility of “twist”)

“Reductio ad absurdum” argument

First, suppose a MTT realizing twist

Then, we show that the size of the set of output

from the MTT has polynomial upper bound w.r.t.

the size of the input tree

which is not the case for “twist”, having

exponential number of outputs

Rough Proof Sketch :: Step 0/5

Suppose a MTT M is realizing “twist”

Rough Proof Sketch :: Step 1/5

Lemma 4

If a term of M is evaluated to a proper subpart

of an output, it MUST be evaluated to the term

root

<q,t>(…)

root

B

Aa

b

e

if

Rough Proof Sketch :: Step 2/5

Lemma 5

Any term of M generating only the output of

“twist” is equivalent to a term if the following

form:

Example:

wnf ::= <q,t>(wnf, …, wnf) (always generates “root”)
| ct

ct ::= δ(ct, …, ct)

<q1,t1>(<q2,t2>(a(e), A(E)),
<q3,t3>(),
<q4,t4>(<q5,t5>(b(a(e), E)))

Rough Proof Sketch :: Step 3/5

Lemma 7

 Any term of M in the form of preceding slide is

equivalent to a set of terms in the following form

(“normal form” in the paper):

nf ::= <q,t>(st, …, st)
st ::= a(st) | b(st) | e() | A(st) | B(st) | E()

Rough Proof Sketch :: Step 4/5

Lemma 8

Two normal form terms with the same head

produces “similar” set of outputs – the number

of different output trees are constant

Shown by a similar argument to the first lemma

Rough Proof Sketch :: Step 5/5

Lemma 10 / Cor 1

The MTT M can produce at most O(n2)

number of output trees, where n is the length of

the input string

This is a contradiction, since

M is supposed to realize “twist”

The number of output trees from “twist” is 2n

Conclusion

Conclusion

Multi-return MTT

 MTT + Multiple Return Values

Expressiveness

Deterministic: same as MTT

Nondeterministic: more powerful than MTT

Future/Ongoing Work

 Decomposition of mr-MTT

 Is a mr-MTT can be simulated by a composition of

multiple MTTs?

 Hierarchy of mr-MTT

The width of returned tuples affects the expressivenss?

 Application of the proof technique to other

translations know “as a folklore” not to be

expressible in MTT
Thank you for listening!

