Multi-Return
Macro Tree Transducers

Kazuhiro Inaba
Haruo Hosoya

University of Tokyo

PLAN-X 2008, San Francisco

Models of Tree Translation

(Top-down) Tree Transducer (TOP)
[Rounds/Thatcher, 70’s]
Finite set of relations from a tree to a tree

Defined by structural (mutual) recursion on the
iInput tree

<qg, bin(x1,x2)> -» fst(<q,x1>, <p,x2>)
<q, leaf()> > leaf()

<p, bin(x1,x2)> -» snd(<q,x1>, <p,x2>)
<p, leaf()> > leaf()

(b Isy
() (o Is) fond

Do Oe — GO @@
= =l

<q, bin(x1,x2)> - fst(<q,x1>, <p,x2>)
<q, leaf()> > leaf()

<p, bin(x1,x2)> -» snd(<q,x1>, <p,x2>)
<p, leaf(Q> - leaf(Q

Models of Tree Translation

Macro Tree Transducer (MTT)
[Engelfriet/VVogler 85]
Tree Transducer + Accumulating parameters
Strictly more expressive than TOP

<q, bin(x1,x2)>Cy) - bin(<q,x1>(1(Cy)),
<q,x2>(2Cy)))

<q, leaf(Q)> (y) -y

<q, bin(x1,x2)>Cy) - bin(<q,x1>(1(Cy)),
<q,x2>(2(y)))
<q, leaf(Q)> (y) -y

Multi-Return Macro Tree Transducer
[Our Work]

Macro Tree Transducer + Multiple return values

<q, bin(x1,x2)>(y) - let (z1,z2) = <q,x1>(1(y)) 1in
let (z3,z4) = <p,x2>(2(y)) 1in
(bin(zl1,z3), fst(z2,z4))
<q, leaf(Q)> (y) » (leafQ, y)

<p, bin(x1,x2)>(y) - let (z1,z2) = <q,x1>(1(y)) 1in
let (z3,z4) = <p,x2>(2(y)) 1in
(bin(zl1,z3), snd(z2,z4))
<p, leaf(Q)> (y) » (leafQ, y)

Outline

Why Multi-Return?

Definition of Multi-Return MTT

Expressiveness of Multi-Return MTT
Deterministic case
Nondeterministic case

Why Multi-Return?

Why Multi-Return?

MTT Is not symmetric

can pass multiple tree-fragments from a parent
to the children via accumulation parameters

<g0, a(x)> » <gl,x>(some(tree,here),
other(tree,here))

<gql, b(x)>(yl,y2) -» use(yl, and(y2), here)

Why Multi-Return?

MTT Is not symmetric

can not pass multiple tree-fragment from a child
to the parent

<q0,

<ql,

a(x)> » can(use(<ql,x>), here)

b(x)> - one(tree)

Multi-Return MTT can:

<qO0,

<ql,

a(x)> - let (z1,z2) = <ql,x> 1in
can(use(zl), and(z2), here)

b(x)> - (one(tree), two(tree))

Inefficiency caused by the lack of child-to-
parent multiple tree passing

Gather all subtrees with root node labeled

(1Pl

a’ and all subtrees labeled “b”

!

Normal MTT realizing this translation must
traverse the input tree twice
For gathering “a” and gathering “b”

No way to pass two intermediate lists from child
to parent!

<q0, root(x)> - pair(<get_a,x>(nil1Q),
<get_b,x>(ni1Q))

<get_a, a(x)>(y) -» cons(a(x), <get_a,x>(y))
<get_a, b(x)>(y) » <get_a, x>(y)

:get_b, a()>(y) » <get_b, x>(y)
<get_b, b(x)>(y) - cons(b(x), <get_b,x>(y))

Multi-Return MTT realizing this translation
must traverse the input tree twice

<q0, root(x)>

- let (z1,z2) = <get,x>(Ni1QOQ,ni1() 1in
pair(zl, z2)

<get, a(x)>(ya,yb) » let (zl1l,z2) = <get,x>(ya,yb) 1in

(cons(a(x),ya), yb)

<get, b(xX)>(ya,yb) - let (zl1l,z2) = <get,x>(ya,yb) in

(ya, cons(b(x),yb))

Definition of
(Multi-Return) MTT

Macro Tree Transducer (MTT)

A MTT Is a tuple consisting of
Q : Set of states
go : Initial state
2 . Set of input alphabet
A : Set of output alphabet
R : Set of rules of the following form:

<q, o(x1,..,xk)>(yl, .., ym) - rhs

rhs ::= d(rhs, .., rhs)
| <q, xi>(C rhs, .., rhs)
| yi

Macro Tree Transducer (MTT)

A MTT Is defined to be

Deterministic if for every pair of geQ, o €2,
there exists at most one rule of the form

<q,0(...)>(...) — ...
Nondeterministic otherwise

Call-by-Value (Inside-Out) Evaluation
Arguments are evaluated first, before function

calls

<ql, a0)>0 - <92,x>(<q3,x>0)
<q2, a(x)>(y)- b(y, y)
<q3, a()>0 - cO

<q3, a0)>0 - dO |<al, a(a(cO))> =

b(cO,cO) or b(d(O,dO)

Multi-Return Macro Tree Transducer
(mr-MTT)

A mr-MTT Is a tuple consisting of
Q : Set of states
go : Initial state
2 . Set of input alphabet
A : Set of output alphabet
R : Set of rules of the following form:

<q, o(x1,..,xk)>(yl, .., ym) - rhs

rhs ::
t ::

(let (z1,..zn) = <q,xi>(t,..,t) 1in)" (t,..,t)
o(t,..,t) | yi | zi

Multi-Return Macro Tree Transducer
(Mmr-MTT)

A mr-MTT Is defined to be

Deterministic if for every pair of geQ, o €2,
there exists at most one rule of the form

<q,0(...)>(...) — ...
Nondeterministic otherwise

Call-by-Value (Inside-Out) Evaluation

Arguments are evaluated first, before function
calls

Expressiveness

Question

Are multi-return MTTs more
expressive than single-return MTTs?

(Is there any translation that can be
written in mr-MTT but not in MTT?)

Answer

Deterministic mr-MTTs are equal In
expressiveness to normal MTTs

n other words, every deterministic mr-MTT can
pe simulated by a normal MTT

Nondeterministic mr-MTTs are strictly
more expressive than normal MTTs

Proof Sketch (Deterministic Case)

A state returning n-tuples of trees can be
split into n states returning a single tree

<q,.>C.)-let (z1,z2) = <q,x> in (a(zl,z2), b(z2,z1))

1L

<g_1,.>(C.) » let z1 = <g_1,x> 1in

let z2 = <q_2,x> in a(zl,z2)
<g_2,.>C.) » let z1 = <g_1,x> 1in

let z2 = <q_2,x> in b(z2,z1)

1L

<g_1,.>(C.) » a(<qg_1l,x>, <q_2,x>)
<q_2,.>C.) » b(<g_2,x>, <q_1,x>)

Nondeterministic case...

State-splitting may change the behavior

<g0, node(x)>
- let (z1,z2) = <q,Xx> in
bin(zl,z2)
<q, leafQ> -» (aQ), aQ)
<q, leafQ> -» (b, bQ)

_ys

<g0, node(x)>
- bin(<q_1l,x>, <q_2,x>)
<q_1l, Teaf(> -» aQ
<q_2, leaf(O> -» aQ
<q_1l, TeafO> - bQ
<q_2, leaf(O> - b()

@@

Nondeterministic case...

In fact, there is no general way to simulate
a nondeterministic mr-MTT In a normal
M

Example of such translation = “twist”

Nondeterministically translates one input string
S$SS..SS

of length n to two string of the same length:
- one consists of symbols a and b, and

- the other consists of symbols A and B
such that the outputs are being reversal of each other.

twist
(oot
s
s
Z

“twist” in Multi-Return MTT

<q,

<P,

<P,

<P,

root(x)>-» let (z1,z2) = <p,x>(E(Q) 1n
root(zl, z2)

s(X)>(y)- let (z1,z2) = <p,x>(C ACy)) 1n
(a(zl), z2)

s()>(y)-» let (z1,z2) = <p,x>(B(y)) 1n
(b(z1), z2)

z>(Cy) - (eQO, y)

How to prove the inexpressibility in MTT?

Known proof technigues
Height Property
Size Property
Output Language

... all fails here.

— Long and involved proof specialized for
the “twist” translation

Proof Sketch (Inexpressibility of “twist”)

“Reductio ad absurdum” argument
First, suppose a MTT realizing twist

Then, we show that the size of the set of output
from the MTT has polynomial upper bound w.r.t.
the size of the input tree

which is not the case for “twist”, having
exponential number of outputs

Rough Proof Sketch :: Step 0/5

Suppose a MTT M is realizing “twist”

Rough Proof Sketch :: Step 1/5

Lemma 4

If a term of M Is evaluated to a proper subpart
of an output, it MUST be evaluated to the term

Rough Proof Sketch :: Step 2/5

Lemma 5

Any term of M generating only the output of
“twist” is equivalent to a term if the following

form:
wnf ::= <q,t>(wnf, .., wnf) (always generates “root”)
| ct
ct = d(ct, .., ct)
Example:
<ql,t1>(<q2,t2>(a(e), A(E)),
<q3,t3>0,

<q4,t4>(<q5,t5>(b(ale), E)))

Rough Proof Sketch :: Step 3/5

Lemma 7/

Any term of M in the form of preceding slide Is
equivalent to a set of terms in the following form
(“normal form” in the paper):

nf ::= <q,t>(st, .., st)
st ::=a(st) | b(st) | eD | A(st) | B(st) | EQ

Rough Proof Sketch :: Step 4/5

Lemma 8

Two normal form terms with the same head
produces “similar” set of outputs — the number
of different output trees are constant

Shown by a similar argument to the first lemma

Rough Proof Sketch :: Step 5/5

Lemma 10/ Cor 1

The MTT M can produce at most O(n?)
number of output trees, where n is the length of
the Input string

This Is a contradiction, since
M is supposed to realize “twist”
The number of output trees from “twist” is 2"

Conclusion

Conclusion

Multi-return MTT
MTT + Multiple Return Values

EXpressiveness
Deterministic: same as MTT
Nondeterministic: more powerful than MTT

Future/Ongoing Work

Decomposition of mr-MTT

Isa mr-MTT can be simulated by a composition of
multiple MTTs?

Hierarchy of mr-MTT
The width of returned tuples affects the expressivenss?

Application of the proof technique to other
translations know “as a folklore” not to be

expressible in MTT _ _
Thank you for listening!

