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TRANSLATION MEMBERSHIP?

 “Translation Membership Problem” for a tree-to-tree 
translation τ :

 We are especially interested in nondeterministic 
translations where τ (s) is a set of trees
(i.e., the translation membership problem asks “t ∈τ (s) ?”)

 Input:     Two trees s and t

 Output:  “YES” if τ  translates s to t (“NO” otherwise)

s t
τ

？



APPLICATIONS

 Dynamic assertion testing / Unit testing

 How can we check the assertion efficiently? 

 How can we check it when the translation depends on external 
effects (randomness, global options, or data form external DB…)?
 “Is there a configuration realizes the input/output pair?”

 Sub-problem of larger decision problems

 Membership test for the domain of the translation
[Inaba&Maneth 2008]

assert(
run_my_xslt( load_xml(“test-in.xml”) )

== load_xml(“test-out.xml”)  );



KNOWN RESULTS ON

COMPLEXITIES OF TRANSLATION MEMBERSHIP

 If τ is a Turing Machine
… Undecidable

 If τ  is a finite composition of
top-down/bottom-up tree transducers
… Linear space [Baker 1978]
 Cubic Time [This Work]

 If τ  is a finite composition of
deterministic macro tree transducers
… Linear time (Easy consequence of [Maneth 2002])



OUTLINE

 Macro Tree Transducers (MTTs)

 IO and OI -- Two Evaluation Strategies

 MTTOI Translation Membership is NP-complete

 … also for finite compositions of MTTIO/MTTOI’s

 MTTIO Translation Membership is in PTIME!!

 … also for several extensions of MTTIO!!

 Conclusion and Open Problems



MACRO TREE TRANSDUCER (MTT)

 An MTT M = (Q, q0, Σ , Δ , R) is a set of first-order 
functions of type Tree(Σ ) * Tree(Δ )k  Tree(Δ )

 Each function is inductively defined on the 1st parameter

 Dispatch based on the label of the current node

 Functions are applied only to the direct children of the current 
node

 Not allowed to inspect other parameter trees

start( A(x1) ) → double( x1, double(x1, E) )

double( A(x1), y1) → double( x1, double(x1, y1) )
double( B, y1 ) → F( y1, y1 )
double( B, y1 ) → G( y1, y1 )



(M)TT IN THE XML WORLD

 Simulation of XSLT, XML-QL [Milo&Suciu&Vianu 2000]
 Expressive fragment of XSLT and XML-QL can be represented as 

a composition of pebble tree transducers (which is a model quite 
related to macro tree transducers)

 TL – XML Translation Language [MBPS 2005]
 A translation language equipping Monadic Second Order Logic as 

its query sub-language, representable by 3 compositions of MTTs.

 Exact Type Checking [MSV00, Tozawa 2001, 
Maneth&Perst&Seidl 2007, Frisch&Hosoya 2007, …]

 Streaming [Nakano&Mu 2006]

 Equality Test [Maneth&Seidl 2007]

 …



IO AND OI

 IO (inside-out / call-by-value)：
evaluate the arguments first and then call the function

start(A(B))  double( B, double(B, E) )
 double( B, F(E, E) )

 F( F(E,E), F(E,E) )
or  G( F(E,E), F(E,E) )

or
 double( B, G(E, E) )

 F( G(E, E), G(E, E) )
or  G( G(E, E), G(E, E) )

double( A(x1), y1) → double( x1, double(x2, y1) )
double( B, y1 ) → F( y1, y1 )
double( B, y1 ) → G( y1, y1 )



IO AND OI

 OI (outside-in / call-by-name)： call the function first 
and evaluate each argument when it is used

start(A(B))  double( B, double(B, E) )
 F( double(B, E), double(B, E) )
 F( F(E,E), double(B, E) )  F( F(E,E), F(E,E) )

 F( F(E,E), G(E,E) )
 F( G(E,E), double(B, E) )  F( G(E,E), F(E,E) )

 F( G(E,E), G(E,E) )
 G( double(B, E), double(B, E) )
 G( F(E,E), double(B, E) )  G( F(E,E), F(E,E) )

 G( F(E,E), G(E,E) )
 G( G(E,E), double(B, E) )  G( G(E,E), F(E,E) )

 G( G(E,E), G(E,E) )

double( A(x1), y1) → double( x1, double(x2, y1) )
double( B, y1 ) → F( y1, y1 )
double( B, y1 ) → G( y1, y1 )



IO OR OI?

 Why we consider two strategies?

 IO is usually a more precise approximation of originally 
deterministic programs:

 OI has better closure properties and a normal form:

 For a composition sequence of OI MTTs, there exists a certain 
normal form with a good property, while not in IO. (explained later)

// f(A(x))  if ≪complex_choice≫ then e1 else e2
f(A(x))  e1
f(A(x))  e2
g(A(x))  h(x, f(x))
h(A(x), y)  B(y, y)



RESULTS



τ

TRANSLATION MEMBERSHIP FOR MTTOI

 MTTOI Translation Membership is NP-hard

 Proof is by reduction from the 3-SAT problem

 There is an MTTOI translation that takes an input encoding two 
natural numbers (c and v), and generates all (and only) satisfiable
3-CNF boolean formulas with c clauses and v variables.
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TRANSLATION MEMBERSHIP FOR MTTOI

 ‘Path-linear’ MTTOI Translation Membership is in NP 
[Inaba&Maneth 2008]

 Path-linear ⇔ No nested state calls to the same child node

 Proof is by the “compressed representation”

 The set τ (s) can be represented as a single “sharing graph” 
(generalization of a DAG) of size O(|s|)  [Maneth&Bussato 2004]

 Navigation (up/1st child/next sibling) on the representation can be 
done in P only if the MTT τ  is a path-linear.

 Corollary: MTTOI Translation Membership is in NP

 Proof  is by the ‘Garbage-Free’ form  in the next page…

f( A(x1, x2) )  g(x1, g(x2, B))  // ok
f( A(x1, x2) )  g(x1, g(x1, B))  // bad
f( A(x1, x2) )  h(x1, g(x2, B) , g(x2, C)) // ok



K-COMPOSITIONS OF MTTS:
TRANSLATION MEMBERSHIP FOR MTTOI

K AND MTTIO
K

 MTTOI
k (k≧1) Translation Membership is NP-complete

 Proof is by the Garbage-Free Form [Inaba&Maneth 2008]

 by NP-oracle we can guess all si’s

 MTTIO
k (k≧2) Translation Membership is NP-complete

 Proof is by Simulation between IO and OI [Engelfriet&Vogler 1985]

 MTTOI ⊆ MTTIO ； MTTIO and    MTTIO ⊆ MTTOI ； MTTOI

Any composition sequence of MTTOI’s
τ  = τ 1 ； τ 2 ； … ； τ k can be transformed to a

“Garbage-Free” sequence of path-linear MTTOI’s 
τ  = ρ 1 ； ρ 2 ； … ； ρ 2k where for any (s,t) with t∈τ (s), 

there exists intermediate trees
s1∈ρ 1 (s), s2∈ρ 2 (s1), …, t∈ρ 2k (s2k-1)  such that |si|≦ c |t|



MAIN RESULT:
TRANSLATION MEMBERSHIP FOR MTTIO

 MTTIO Translation Membership is in PTIME
(for an mtt with k parameters, O(nk+2))

 Proof is based on the Inverse Type Inference 
[Engelfriet&Vogler 1985, Milo&Suciu&Vianu 2000]

 Instead of  “t ∈ τ (s)”, check “s ∈ τ -1(t)”

 First, construct the bottom-up tree automaton recognizing τ -1(t)

 Then, run the automaton on s.

For an MTT τ  and a tree t, the inverse image τ -1 (t)  is a 
regular tree language

PITFALL
The automaton may have 2|t|

states in the worst case.

PTIME SOLUTION
Do not fully instantiate the 

automaton. Run it while 
constructing it on-the-fly.



EXAMPLE (1)

 τ  =                                                                s = A(B),
t = F(G(E,E), G(E,E))

 State of the inverse-type automaton :: {st} ∪ ({db}×V(t))   2V(t)

 where V(t) is the set of all subtrees of t

st( A(x1) ) → db( x1, db(x2, E) )
db( A(x1), y1) → db( x1, db(x2, y1) )
db( B, y1 ) → F( y1, y1 )
db( B, y1 ) → G( y1, y1 )

A

B

We assign the state qB such that:
qB (st) = {}
qB (db, E) = { G(E,E) }         // F(E,E) ∉ V(t)
qB (db, G(E,E)) = { F(G(E,E), G(E,E)) } // G(G,G) ∉ V(t)
qB (db, F(G(E,E), G(E,E))) = {}

We assign the state qA such that:
qA (st) = qB (db, qB(db,E)) = qB (db, {G(E,E)}) = {F(G(E,E), G(E,E))}
qA (db, E) = qB (db, qB(db,E))                   = {F(G(E,E), G(E,E))}
qA (db, G(E,E)) = qB (db, qB(db,G(E,E))) = {}
qA (db, F(G(E,E), G(E,E)))  = …        = {}



EXAMPLE (2)

 τ  =                                                                s = A(B),
t = F(G(E,E), F(E,E))

 State of the inverse-type automaton :: {st} ∪ ({db}×V(t))   2V(t)

 where V(t) is the set of all subtrees of t

st( A(x1) ) → db( x1, db(x1, E) )
db( A(x1), y1) → db( x1, db(x1, y1) )
db( B, y1 ) → F( y1, y1 )
db( B, y1 ) → G( y1, y1 )

A

B

qB (st) = {}
qB (db, E) = { G(E,E), F(E,E) }
qB (db, G(E,E)) = {} // F(G,G) and G(G,G) ∉ V(t)
qB (db, F(E,E)) = {} // F(F,F) and G(F,F) ∉ V(t)
qB (db, F(G(E,E), F(E,E))) = {} // …

qA (st) = qB (db, qB(db,E)) = qB (db, {G(E,E),F(E,E)}) = {}
qA (db, E) = qB (db, qB(db,E)) = {}
qA (db, G(E,E)) = qB (db, qB(db,G(E,E))) = {}
qA (db, F(E,E)) = qB (db, qB(db,F(E,E))) = {}
qA (db, F(G(E,E), G(E,E))) = … = {}



NOTE

 Complexity:

 At each node of s, one function of type
{st}∪({db}×V(t))  2V(t) is computed

 {st}∪({db}×V(t))  2V(t)  ≡ 2V(t)×({st}∪({db}×V(t)))

 Each function is of size O( |V(t)|2 ), which is computed per 
each node (O(|s|) times)  (and, computation of each entry 
of the function requires O(|t|2) time)  O( |s| |t|4 ) time

 MTTOI also has regular inverse image, but the inverse-
type automaton may have 2^2^|t| many states in the 
worst case
 Computing even a single state requires EXPTIME



SEVERAL EXTENSIONS

 Variants of MTTs with PTIME Translation Membership

 MTTIO with TAC-look-ahead

 Rules are chosen not only by the label of the current node, but by 
a regular look-ahead and (dis)equality-check on child subtrees

 Multi-Return MTTIO

 Each function can return multiple tree fragments (tuples of trees)

 Finite-copying MTTOI

 OI, but each parameter is copied not so many times.

f( A(x1,x2) ) s.t. x1≡x2 → C( f(x1) )
f( A(x1,x2) ) s.t. x1 has even number of nodes

→ D( f(x1), f(x2) )
f( A(x1,x2) ) otherwise → E( f(x1), f(x2) )

f( A(x1,x2) )  let (z1,z2) = g(x1) in D( z1, C(z2) )
g( A(x1,x2) )  ( f(x1), f(x2) )

As long as the inverse type is 
sufficiently small, we can apply the 
same technique.



CONCLUSION AND OPEN PROBLEMS

 Complexity of Translation Membership is

 NP-complete for

 MTTOI
k (k ≧ 1),  MTTIO

k (k ≧ 2)

 Higher-Order MTT, Macro Forest TT, …

 PTIME for

 MTTIO (+ look-ahead and multi-return)

 Open Problems

 MTTOI with at most one accumulating parameter

 Our encoding of SAT used 3 parameters, which actually can be 
done with 2. How about 1? 

 MTTIO with holes [Maneth&Nakano PLAN-X08]

 It is an extension of IO MTTs, but has more complex inverse-type.



THANK YOU!


