
THE COMPLEXITY OF
TRANSLATION MEMBERSHIP FOR
MACRO TREE TRANSDUCERS

Kazuhiro Inaba (The University of Tokyo)

Sebastian Maneth (NICTA & University of New South Wales)

PLAN-X 2009, Savannah

TRANSLATION MEMBERSHIP?

 “Translation Membership Problem” for a tree-to-tree
translation τ :

 We are especially interested in nondeterministic
translations where τ (s) is a set of trees
(i.e., the translation membership problem asks “t ∈τ (s) ?”)

 Input: Two trees s and t

 Output: “YES” if τ translates s to t (“NO” otherwise)

s t
τ

？

APPLICATIONS

 Dynamic assertion testing / Unit testing

 How can we check the assertion efficiently?

 How can we check it when the translation depends on external
effects (randomness, global options, or data form external DB…)?
 “Is there a configuration realizes the input/output pair?”

 Sub-problem of larger decision problems

 Membership test for the domain of the translation
[Inaba&Maneth 2008]

assert(
run_my_xslt(load_xml(“test-in.xml”))

== load_xml(“test-out.xml”));

KNOWN RESULTS ON

COMPLEXITIES OF TRANSLATION MEMBERSHIP

 If τ is a Turing Machine
… Undecidable

 If τ is a finite composition of
top-down/bottom-up tree transducers
… Linear space [Baker 1978]
 Cubic Time [This Work]

 If τ is a finite composition of
deterministic macro tree transducers
… Linear time (Easy consequence of [Maneth 2002])

OUTLINE

 Macro Tree Transducers (MTTs)

 IO and OI -- Two Evaluation Strategies

 MTTOI Translation Membership is NP-complete

 … also for finite compositions of MTTIO/MTTOI’s

 MTTIO Translation Membership is in PTIME!!

 … also for several extensions of MTTIO!!

 Conclusion and Open Problems

MACRO TREE TRANSDUCER (MTT)

 An MTT M = (Q, q0, Σ , Δ , R) is a set of first-order
functions of type Tree(Σ) * Tree(Δ)k  Tree(Δ)

 Each function is inductively defined on the 1st parameter

 Dispatch based on the label of the current node

 Functions are applied only to the direct children of the current
node

 Not allowed to inspect other parameter trees

start(A(x1)) → double(x1, double(x1, E))

double(A(x1), y1) → double(x1, double(x1, y1))
double(B, y1) → F(y1, y1)
double(B, y1) → G(y1, y1)

(M)TT IN THE XML WORLD

 Simulation of XSLT, XML-QL [Milo&Suciu&Vianu 2000]
 Expressive fragment of XSLT and XML-QL can be represented as

a composition of pebble tree transducers (which is a model quite
related to macro tree transducers)

 TL – XML Translation Language [MBPS 2005]
 A translation language equipping Monadic Second Order Logic as

its query sub-language, representable by 3 compositions of MTTs.

 Exact Type Checking [MSV00, Tozawa 2001,
Maneth&Perst&Seidl 2007, Frisch&Hosoya 2007, …]

 Streaming [Nakano&Mu 2006]

 Equality Test [Maneth&Seidl 2007]

 …

IO AND OI

 IO (inside-out / call-by-value)：
evaluate the arguments first and then call the function

start(A(B))  double(B, double(B, E))
 double(B, F(E, E))

 F(F(E,E), F(E,E))
or  G(F(E,E), F(E,E))

or
 double(B, G(E, E))

 F(G(E, E), G(E, E))
or  G(G(E, E), G(E, E))

double(A(x1), y1) → double(x1, double(x2, y1))
double(B, y1) → F(y1, y1)
double(B, y1) → G(y1, y1)

IO AND OI

 OI (outside-in / call-by-name)： call the function first
and evaluate each argument when it is used

start(A(B))  double(B, double(B, E))
 F(double(B, E), double(B, E))
 F(F(E,E), double(B, E))  F(F(E,E), F(E,E))

 F(F(E,E), G(E,E))
 F(G(E,E), double(B, E))  F(G(E,E), F(E,E))

 F(G(E,E), G(E,E))
 G(double(B, E), double(B, E))
 G(F(E,E), double(B, E))  G(F(E,E), F(E,E))

 G(F(E,E), G(E,E))
 G(G(E,E), double(B, E))  G(G(E,E), F(E,E))

 G(G(E,E), G(E,E))

double(A(x1), y1) → double(x1, double(x2, y1))
double(B, y1) → F(y1, y1)
double(B, y1) → G(y1, y1)

IO OR OI?

 Why we consider two strategies?

 IO is usually a more precise approximation of originally
deterministic programs:

 OI has better closure properties and a normal form:

 For a composition sequence of OI MTTs, there exists a certain
normal form with a good property, while not in IO. (explained later)

// f(A(x))  if ≪complex_choice≫ then e1 else e2
f(A(x))  e1
f(A(x))  e2
g(A(x))  h(x, f(x))
h(A(x), y)  B(y, y)

RESULTS

τ

TRANSLATION MEMBERSHIP FOR MTTOI

 MTTOI Translation Membership is NP-hard

 Proof is by reduction from the 3-SAT problem

 There is an MTTOI translation that takes an input encoding two
natural numbers (c and v), and generates all (and only) satisfiable
3-CNF boolean formulas with c clauses and v variables.

A

A

B

B

B

x1

∧

x2

∨

x1

∨

x3x2 x3

Z

2
clauses

3
variables

￢

∧

x2

∨

x1

∨

x3x2 ￢

x3x1

e.g.,

or

But, not

x1

∧

￢

∨

￢

∨

x1x1 ￢

x1x1 x1

TRANSLATION MEMBERSHIP FOR MTTOI

 ‘Path-linear’ MTTOI Translation Membership is in NP
[Inaba&Maneth 2008]

 Path-linear ⇔ No nested state calls to the same child node

 Proof is by the “compressed representation”

 The set τ (s) can be represented as a single “sharing graph”
(generalization of a DAG) of size O(|s|) [Maneth&Bussato 2004]

 Navigation (up/1st child/next sibling) on the representation can be
done in P only if the MTT τ is a path-linear.

 Corollary: MTTOI Translation Membership is in NP

 Proof is by the ‘Garbage-Free’ form in the next page…

f(A(x1, x2))  g(x1, g(x2, B)) // ok
f(A(x1, x2))  g(x1, g(x1, B)) // bad
f(A(x1, x2))  h(x1, g(x2, B) , g(x2, C)) // ok

K-COMPOSITIONS OF MTTS:
TRANSLATION MEMBERSHIP FOR MTTOI

K AND MTTIO
K

 MTTOI
k (k≧1) Translation Membership is NP-complete

 Proof is by the Garbage-Free Form [Inaba&Maneth 2008]

 by NP-oracle we can guess all si’s

 MTTIO
k (k≧2) Translation Membership is NP-complete

 Proof is by Simulation between IO and OI [Engelfriet&Vogler 1985]

 MTTOI ⊆ MTTIO ； MTTIO and MTTIO ⊆ MTTOI ； MTTOI

Any composition sequence of MTTOI’s
τ = τ 1 ； τ 2 ； … ； τ k can be transformed to a

“Garbage-Free” sequence of path-linear MTTOI’s
τ = ρ 1 ； ρ 2 ； … ； ρ 2k where for any (s,t) with t∈τ (s),

there exists intermediate trees
s1∈ρ 1 (s), s2∈ρ 2 (s1), …, t∈ρ 2k (s2k-1) such that |si|≦ c |t|

MAIN RESULT:
TRANSLATION MEMBERSHIP FOR MTTIO

 MTTIO Translation Membership is in PTIME
(for an mtt with k parameters, O(nk+2))

 Proof is based on the Inverse Type Inference
[Engelfriet&Vogler 1985, Milo&Suciu&Vianu 2000]

 Instead of “t ∈ τ (s)”, check “s ∈ τ -1(t)”

 First, construct the bottom-up tree automaton recognizing τ -1(t)

 Then, run the automaton on s.

For an MTT τ and a tree t, the inverse image τ -1 (t) is a
regular tree language

PITFALL
The automaton may have 2|t|

states in the worst case.

PTIME SOLUTION
Do not fully instantiate the

automaton. Run it while
constructing it on-the-fly.

EXAMPLE (1)

 τ = s = A(B),
t = F(G(E,E), G(E,E))

 State of the inverse-type automaton :: {st} ∪ ({db}×V(t))  2V(t)

 where V(t) is the set of all subtrees of t

st(A(x1)) → db(x1, db(x2, E))
db(A(x1), y1) → db(x1, db(x2, y1))
db(B, y1) → F(y1, y1)
db(B, y1) → G(y1, y1)

A

B

We assign the state qB such that:
qB (st) = {}
qB (db, E) = { G(E,E) } // F(E,E) ∉ V(t)
qB (db, G(E,E)) = { F(G(E,E), G(E,E)) } // G(G,G) ∉ V(t)
qB (db, F(G(E,E), G(E,E))) = {}

We assign the state qA such that:
qA (st) = qB (db, qB(db,E)) = qB (db, {G(E,E)}) = {F(G(E,E), G(E,E))}
qA (db, E) = qB (db, qB(db,E)) = {F(G(E,E), G(E,E))}
qA (db, G(E,E)) = qB (db, qB(db,G(E,E))) = {}
qA (db, F(G(E,E), G(E,E))) = … = {}

EXAMPLE (2)

 τ = s = A(B),
t = F(G(E,E), F(E,E))

 State of the inverse-type automaton :: {st} ∪ ({db}×V(t))  2V(t)

 where V(t) is the set of all subtrees of t

st(A(x1)) → db(x1, db(x1, E))
db(A(x1), y1) → db(x1, db(x1, y1))
db(B, y1) → F(y1, y1)
db(B, y1) → G(y1, y1)

A

B

qB (st) = {}
qB (db, E) = { G(E,E), F(E,E) }
qB (db, G(E,E)) = {} // F(G,G) and G(G,G) ∉ V(t)
qB (db, F(E,E)) = {} // F(F,F) and G(F,F) ∉ V(t)
qB (db, F(G(E,E), F(E,E))) = {} // …

qA (st) = qB (db, qB(db,E)) = qB (db, {G(E,E),F(E,E)}) = {}
qA (db, E) = qB (db, qB(db,E)) = {}
qA (db, G(E,E)) = qB (db, qB(db,G(E,E))) = {}
qA (db, F(E,E)) = qB (db, qB(db,F(E,E))) = {}
qA (db, F(G(E,E), G(E,E))) = … = {}

NOTE

 Complexity:

 At each node of s, one function of type
{st}∪({db}×V(t))  2V(t) is computed

 {st}∪({db}×V(t))  2V(t) ≡ 2V(t)×({st}∪({db}×V(t)))

 Each function is of size O(|V(t)|2), which is computed per
each node (O(|s|) times) (and, computation of each entry
of the function requires O(|t|2) time)  O(|s| |t|4) time

 MTTOI also has regular inverse image, but the inverse-
type automaton may have 2^2^|t| many states in the
worst case
 Computing even a single state requires EXPTIME

SEVERAL EXTENSIONS

 Variants of MTTs with PTIME Translation Membership

 MTTIO with TAC-look-ahead

 Rules are chosen not only by the label of the current node, but by
a regular look-ahead and (dis)equality-check on child subtrees

 Multi-Return MTTIO

 Each function can return multiple tree fragments (tuples of trees)

 Finite-copying MTTOI

 OI, but each parameter is copied not so many times.

f(A(x1,x2)) s.t. x1≡x2 → C(f(x1))
f(A(x1,x2)) s.t. x1 has even number of nodes

→ D(f(x1), f(x2))
f(A(x1,x2)) otherwise → E(f(x1), f(x2))

f(A(x1,x2))  let (z1,z2) = g(x1) in D(z1, C(z2))
g(A(x1,x2))  (f(x1), f(x2))

As long as the inverse type is
sufficiently small, we can apply the
same technique.

CONCLUSION AND OPEN PROBLEMS

 Complexity of Translation Membership is

 NP-complete for

 MTTOI
k (k ≧ 1), MTTIO

k (k ≧ 2)

 Higher-Order MTT, Macro Forest TT, …

 PTIME for

 MTTIO (+ look-ahead and multi-return)

 Open Problems

 MTTOI with at most one accumulating parameter

 Our encoding of SAT used 3 parameters, which actually can be
done with 2. How about 1?

 MTTIO with holes [Maneth&Nakano PLAN-X08]

 It is an extension of IO MTTs, but has more complex inverse-type.

THANK YOU!

