THE COMPLEXITY OF
TRANSLATION MEMBERSHIP FOR
MACRO TREE TRANSDUCERS

‘ Kazuhiro Inaba (The University of Tokyo)
Py Sebastian Maneth (NICTA & University of New South Wales)

PLAN-X 2009, Savannah

TRANSLATION MEMBERSHIP?

“Translation Membership Problem” for a tree—to—tree
translation T :

Input: Two trees s and t
Output: “YES” if T translates s tot (“NO” otherwise)

S S t
T

We are especially interested in nondeterministic
translations where T (s) is a set of trees
(i.e., the translation membership problem asks “t €1 (s) ?7)

APPLICATIONS

Dynamic assertion testing / Unit testing

assert(
run_my_xsl1t(lToad_xml(“test-in.xml1”))
== Joad_xml(“test-out.xml1”));

How can we check the assertion efficiently?

How can we check it when the translation depends on external
effects (randomness, global options, or data form external DB---)?

- “Is there a configuration realizes the input/output pair?”

Sub—problem of larger decision problems

Membership test for the domain of the translation
[Inaba&Maneth 2008]

KNOWN RESULTS ON
COMPLEXITIES OF TRANSLATION MEMBERSHIP

If T is a Turing Machine
-+ Undecidable

If T is a finite composition of

top—down/bottom—up tree transducers
-+ Linear space [Baker 1978]

If T is a finite composition of
deterministic macro tree transducers
.=+ Linear time (Easy consequence of [Maneth 2002])

OUTLINE

Macro Tree Transducers (MTTs)
IO and Ol —— Two Evaluation Strategies

MTT,, Translation Membership is NP—complete
--+ also for finite compositions of MTT,;/MTT, s

MTT,, Translation Membership is in PTIME!

-+ also for several extensions of MTT ;!

Conclusion and Open Problems

MACRO TREE TRANSDUCER (MTT)

start(A(Xy)) -» double(x;, double(x;, E))

double(A(X;), y;) » double(x;, double(X;, Yy{))
double(B, y;) = FCys, y1)
double(B, y;) = G(Cy, y1)

An MTT M =(Q, gy, Z , A, R) is a set of first—order
functions of type Tree(X) * Tree(A)x 2> Tree(A)

Each function is inductively defined on the 15t parameter
Dispatch based on the label of the current node

Functions are applied only to the direct children of the current
node

Not allowed to inspect other parameter trees

(M)TT IN THE XML WORLD

Simulation of XSLT, XML-QL [Milo&Suciu&Vianu 2000]

Expressive fragment of XSLT and XML-QL can be represented as
a composition of pebble tree transducers (which is a model quite
related to macro tree transducers)

TL — XML Translation Language [MBPS 2005]

A translation language equipping Monadic Second Order Logic as
its query sub—language, representable by 3 compositions of MTTs.

Exact Type Checking [MSVO00, Tozawa 2001,
Maneth&Perst&Seidl 2007, Frisch&Hosoya 2007, ---]

Streaming [Nakano&Mu 2006]
Equality Test [Maneth&Seidl 2007]

IO AND OI

double(A(X{), y;) » double(Xx;, double(x,, y;))
double(B, y;) - FCyq, Y1)
double(B, y;) - GCyq, Y1)

IO (inside—out / call-by—value):
evaluate the arguments first and then call the function

start(A(B)) = double(B, double(B, E))
= double(B, F(E, E))
= FC F(E,E), F(E,E))
or 9 G(F(E,E), F(E,E))
or
= double(B, G(E, E))
2 FC G(E, E), G(E, E))
or 9 G(G(E, E), G(E, E))

IO AND OI

double(A(X{), y;) » double(Xx;, double(x,, y;))

double(B, y;) = F(yy, V1)
double(B, y;) - G(vy, V1)

Ol (outside—in / call-by—name): call the function first
and evaluate each argument when it is used

start(A(B)) = double(B, double(B, E))
=2 F(double(B, E), double(B, E))
2 F(F(E,E), double(B, E)) = F(F(E,E), F(E,E)
= F(F(E,E), G(E,E)
2 F(G(E,E), double(B, E)) = F(G(E,E), F(E,E)
2 F(G(E,E), G(E,E)
=2 G(double(B, E), double(B, E))
=2 G(F(E,E), double(B, E)) = G(F(E,E), F(E,E)
=2 G(F(E,E), G(E,E)
=» G(G(E,E), double(B, E)) = G(G(E,E), F(E,E)
=2» G(G(E,E), G(E,E)

U\ \V

U\

IO or OI?

Why we consider two strategies?

IO is usually a more precise approximation of originally
deterministic programs:

f(A(X)) > el
f(A(X)) > e2
g(A(x)) 2> h(x, f(x))

h(A(X), y) = B(ly, y)

Ol has better closure properties and a normal form:

For a composition sequence of Ol MTTs, there exists a certain
normal form with a good property, while not in IO. (explained later)

RESULTS

TRANSLATION MEMBERS

MTT,, Translation Membershi

Proof is by reduction from the

o There is an MTT, translation tha
natural numbers (¢ and v), and gen
3—CNF boolean formulas with ¢ clauses

2 —
clauses /(é

3 —

variables

@ G e)
«
O@M

TRANSLATION MEMBERSHIP FOR MT T,

‘Path-linear’ MTT, Translation Membership is in NP
[Inaba&Maneth 2008]

Path—linear & No nested state calls to the same child node

FCAX, X)) 2 g(Xy, g(xp, B)) // ok
f(A(X1, Xz)) 2 g(Xl. g(Xl. B)) // bad
fC AXy, X))) 2 h(xy, 9(X;, B) , g(x,, ©)) // ok

Proof is by the “compressed representation”

o The set T (s) can be represented as a single “sharing graph”
(generalization of a DAG) of size O(|s|) [Maneth&Bussato 2004]

o Navigation (up/1st child/next sibling) on the representation can be
done in P only if the MTT T is a path—linear.

Corollary: MTT; Translation Membership is in NP

Proof is by the ‘Garbage—Free’ form in the next page---

K-COMPOSITIONS OF MTTSs:
TRANSLATION MEMBERSHIP FOR MTTOIK AND MTTIOK

MTT,k (k=1) Translation Membership is NP-complete
Proof is by the Garbage—Free Form [Inaba&Maneth 2008]

Any composition sequence of MTTOI' s

T =T ;T ,; " ; T, canbe transformed to a
“Garbage-Free” sequence of path—linear MTT,’ s
T =P ,:P,; " ;P o Whereforany (sit) withtET (s),

there exists intermediate trees
S;Ep ((s), s, €Ep ,(sy), ", tEP 4 (sy_1) such that |s|= ¢ |t]

=>» by NP-oracle we can guess all s;’ s

MTT,.¢ (k=2) Translation Membership is NP-complete

Proof is by Simulation between 10 and Ol [Engelfriet&Vogler 1985]
oMTTy & MTT,g s MTT,; and MTT,5 & MTT, ; MTTg,

MAIN RESULT:
TRANSLATION MEMBERSHIP FOR MT T4

MTT,, Translation Membership is in PTIME
(for an mtt with k parameters, O(nk*2))

Proof is based on the Inverse Type Inference
[Engelfriet&Vogler 1985, Milo&Suciu&Vianu 2000]

Foran MTT T and a tree t, the inverse image T ~'(t) is a
regular tree language

o Instead of “t € T (s)”, check “s € 1 ~'(t)”
First, construct the bottom—up tree automaton recognizing T ~'(t)

Then, run the automaton on s.

PTIME SOLUTION
Do not fully instantiate the
automaton. Run it while
constructing it on—the—fly.

PITFALL
The automaton may have 21
states in the worst case.

EXAMPLE (1)

T =

st(A(Xy)) - db(x5, db(x;, E))
db(A(xy), y1) = db(x;, db(X;, ¥y1)) | 5= A(B),

db(B, y;) - FCy1, Y1) t = F(G(E,E), G(E,E))

db(B, y;) > G(C yy, y1)

State of the inverse—type automaton :: {st} U ({db} x V(t)) »> 2V®

@ da (db, G(EE)) = dg (db, qB(db,G(E,E)))
g (db, F(G(EE), GEE)) = -

[We assign the state g, such that:
ay (st) = qgg(db, gg(db,E)) = g5 (db, {G(E,E)D

F(G(E,E), G(E,E))}
(G(E,E), G(E,E))}

—t—

aa (db, E) = g (db, qB(db,E))

L I I B B
1—_:'1—_0"_r|'

~

We assign the state qg such that:
s (st) ={}
ag (db, E) ={ G(EE) } // F(E,E) € V(t)

ag (db, G(E,E))
ag (db, F(G(E,E), G(E,E)))

{ F(G(EE), G(EE)) } // G(G,G) ¢ V(t)
{

)
<

)

EXAMPLE (2)

st(A(xp)) = db(xq, db(x;, E))
1 = dbCA(X), yi) = db(X3, db(xy, ¥1)) | s=AB),

db(B, y1) ~ FCyi, y1) _
dbC B, vi) = GCyr yi) t = F(G(E,E), F(E.E))

State of the inverse—type automaton :: {st} U ({db} x V(t)) »> 2V®

W' g, (st) = qg (db, gg(db,E)) = g (db, {GE,E)FEED =1{})

da (db, E) — 0 (db, qB(db,E)) =1}

ax (db, G(EE)) = gg (db, qg(db,G(EE))) =1}

@ ax (db, F(E,E)) = g (db, qg(db,FEE)) =1
a,y (db, F(G(EE), G(EE))) = .- ={} y
~

N

g (st)

gg (db, E)
gg (db, G(E,E))
B qg (db, F(E,E))

gz (db, F(G(EE), F(EE))

G(E,E), F(EE)]
} // F(G,G) and G(G,G) ¢ V(t)
} // F(FF) and G(F,F) & V(t)

} 1/ -)

(I I R Y N B
(e pr— pr—t— p——— ——

NOTE

Complexity:
At each node of s, one function of type
{st}U({db} x V(1)) = 2V is computed
[st}U ({db} X V(t)) > 2V = 2Vt x(st}U({db} x V(1)

Each function is of size O(|V(t)|2), which is computed per
each node (O(|s|) times)
> O(|s| [t|*) time

MTT, also has regular inverse image, but the inverse—
type automaton may have 2°2"|t| many states in the
worst case

- Computing even a single state requires EXPTIME

As long as the inverse type is
sufficiently small, we can apply the
same technique.

SEVERAL EXTENSIONS

Variants of MTTs with PTIME Translation Membership
MTT,, with TAC-look—ahead

o Rules are chosen not only by the label of the current node, but by
a regular look—ahead and (dis)equality—check on child subtrees

f(A(Xl,XZ)) s.t. XlEXZ - C('F(Xl))
fC A(Xy,X%,)) s.t. x; has even number of nodes

- DC f(xy), f(xy))
f(A(X1,X,)) otherwise » E(C f(x), f(x,))

Multi-Return MTT,,

o Each function can return multiple tree fragments (tuples of trees)

fCAMX,X)) 2 et (25,2) = 9(xy) in DC zy, C(zp))
g(A(X1,X%5)) 2 (fT(xp, f(x))

Finite—copying MT T,

o OI, but each parameter is copied not so many times.

CONCLUSION AND OPEN PROBLEMS

Complexity of Translation Membership is
NP—complete for
o MTTok (k = 1), MTTk (k = 2)
o Higher—-Order MTT, Macro Forest TT, ---

PTIME for

o MTT,, (+ look—ahead and multi-return)

Open Problems

MTT,; with at most one accumulating parameter

o Our encoding of SAT used 3 parameters, which actually can be
done with 2. How about 1?

MTT,, with holes [Maneth&Nakano PLAN—-X08]

o It is an extension of IO MTTs, but has more complex inverse—type.

THANK Youl!

