THE COMPLEXITY OF TRANSLATION MEMBERSHIP FOR MACRO TREE TRANSDUCERS

Kazuhiro Inaba (The University of Tokyo)
Sebastian Maneth (NICTA & University of New South Wales)

PLAN–X 2009, Savannah
TRANSLATION MEMBERSHIP?

“Translation Membership Problem” for a tree-to-tree translation τ :

- Input: Two trees s and t
- Output: “YES” if τ translates s to t (“NO” otherwise)

We are especially interested in nondeterministic translations where $\tau(s)$ is a set of trees (i.e., the translation membership problem asks “$t \in \tau(s)$?”)
APPLICATIONS

- Dynamic assertion testing / Unit testing

```plaintext
assert(
    run_my_xslt( load_xml("test-in.xml") )
    == load_xml("test-out.xml")
);
```

- How can we check the assertion efficiently?
- How can we check it when the translation depends on external effects (randomness, global options, or data form external DB...)?
 - “Is there a configuration realizes the input/output pair?”

- Sub-problem of larger decision problems
 - Membership test for the domain of the translation
 [Inaba&Maneth 2008]
Known Results on Complexities of Translation Membership

- If τ is a Turing Machine
 - ... Undecidable

- If τ is a finite composition of top-down/bottom-up tree transducers
 - ... Linear space [Baker 1978]
 - → Cubic Time [This Work]

- If τ is a finite composition of deterministic macro tree transducers
 - ... Linear time (Easy consequence of [Maneth 2002])
Macro Tree Transducers (MTTs)
 • IO and OI — Two Evaluation Strategies

MTT_{OI} Translation Membership is NP-complete
 • … also for finite compositions of \(\text{MTT}_{IO}/\text{MTT}_{OI} \) ’s

MTT_{IO} Translation Membership is in PTIME!!
 • … also for several extensions of \(\text{MTT}_{IO} \)!!

Conclusion and Open Problems
MACRO TREE TRANSDUCER (MTT)

An MTT \(M = (Q, q_0, \Sigma, \Delta, R) \) is a set of first-order functions of type \(\text{Tree}(\Sigma) \times \text{Tree}(\Delta)^k \rightarrow \text{Tree}(\Delta) \)

Each function is inductively defined on the 1\(^{\text{st}}\) parameter
- Dispatch based on the label of the current node
- Functions are applied only to the direct children of the current node
- Not allowed to inspect other parameter trees

\begin{align*}
\text{start(} \ A(x_1) \ \text{)} & \rightarrow \ \text{double(} \ x_1, \ \text{double(} \ x_1, \ E) \ \text{)} \\
\text{double(} \ A(x_1), y_1 \ \text{)} & \rightarrow \ \text{double(} \ x_1, \ \text{double(} \ x_1, y_1) \ \text{)} \\
\text{double(} \ B, y_1 \ \text{)} & \rightarrow \ \text{F(} \ y_1, y_1 \ \text{)} \\
\text{double(} \ B, y_1 \ \text{)} & \rightarrow \ \text{G(} \ y_1, y_1 \ \text{)}
\end{align*}
(M)TT in the XML World

- Simulation of XSLT, XML–QL [Milo&Suciu&Vianu 2000]
 - Expressive fragment of XSLT and XML–QL can be represented as a composition of pebble tree transducers (which is a model quite related to macro tree transducers)

- TL – XML Translation Language [MBPS 2005]
 - A translation language equipping Monadic Second Order Logic as its query sub-language, representable by 3 compositions of MTTs.

- Exact Type Checking [MSV00, Tozawa 2001, Maneth&Perst&Seidl 2007, Frisch&Hosoya 2007, ...]

- Streaming [Nakano&Mu 2006]

- Equality Test [Maneth&Seidl 2007]

- ...
IO AND OI

double(A(x₁), y₁) → double(x₁, double(x₂, y₁))
double(B, y₁) → F(y₁, y₁)
double(B, y₁) → G(y₁, y₁)

- IO (inside–out / call–by–value):
 - evaluate the arguments first and then call the function

start(A(B)) → double(B, double(B, E))
 → **double(B, F(E, E))**
 → **F(F(E,E), F(E,E))**
 or
 → **G(F(E,E), F(E,E))**

or

→ double(B, G(E, E))
 → **F(G(E, E), G(E, E))**
 or
 → **G(G(E, E), G(E, E))**
IO AND OI

double(A(x₁), y₁) → double(x₁, double(x₂, y₁))
double(B, y₁) → F(y₁, y₁)
double(B, y₁) → G(y₁, y₁)

- OI (outside-in / call-by-name): call the function first and evaluate each argument when it is used

\[
\text{start}(A(B)) \Rightarrow \text{double}(B, \text{double}(B, E)) \Rightarrow F(\text{double}(B, E), \text{double}(B, E)) \Rightarrow F(F(E,E), \text{double}(B, E)) \Rightarrow F(F(E,E), F(E,E)) \Rightarrow F(F(E,E), G(E,E)) \Rightarrow F(G(E,E), F(E,E)) \Rightarrow F(G(E,E), G(E,E)) \Rightarrow G(\text{double}(B, E), \text{double}(B, E)) \Rightarrow G(F(E,E), \text{double}(B, E)) \Rightarrow G(F(E,E), F(E,E)) \Rightarrow G(F(E,E), G(E,E)) \Rightarrow G(G(E,E), F(E,E)) \Rightarrow G(G(E,E), G(E,E))
\]
Why we consider two strategies?

- IO is usually a more precise approximation of originally deterministic programs:

```plaintext
// f(A(x)) → if "complex_choice" then e1 else e2
f(A(x)) → e1
f(A(x)) → e2
```

- OI has better closure properties and a normal form:
 - For a composition sequence of OI MTTs, there exists a certain normal form with a good property, while not in IO. (explained later)
RESULTS
Translation Membership

- **MTT\textsubscript{OI} Translation Membership**
 - Proof is by reduction from the 3-SAT problem.
 - There is an MTT\textsubscript{OI} translation that takes an input encoding two natural numbers (c and v), and generates all (and only) satisfiable 3-CNF boolean formulas with c clauses and v variables.
 - Example:
 - \(\text{e.g., } x_1 \lor x_2 \lor x_3 \lor \neg x_1 \lor \neg x_3 \lor x_2 \)
 - But, not
 - \(\text{or } x_1 \land x_2 \land x_3 \land \neg x_1 \land \neg x_3 \land x_2 \land x_1 \land x_2 \land \neg x_3 \land x_2 \land x_3 \land \neg x_2 \land \neg x_3 \land x_2 \)

- 2 clauses
 - A
 - A
 - B
 - B
 - Z

- 3 variables
 - A
 - A
 - B
 - B
 - B
 - Z
Translation Membership for \(MTT_{OI} \)

- ‘Path-linear’ \(MTT_{OI} \) Translation Membership is in NP

 [Inaba&Maneth 2008]
 - Path-linear \(\Leftrightarrow \) No nested state calls to the same child node

 \[
 \begin{align*}
 f(A(x_1, x_2)) &\rightarrow g(x_1, g(x_2, B)) \quad \text{// ok} \\
 f(A(x_1, x_2)) &\rightarrow g(x_1, g(x_1, B)) \quad \text{// bad} \\
 f(A(x_1, x_2)) &\rightarrow h(x_1, g(x_2, B), g(x_2, C)) \quad \text{// ok}
 \end{align*}
 \]

 - Proof is by the “compressed representation”
 - The set \(\tau(s) \) can be represented as a single “sharing graph” (generalization of a DAG) of size \(O(|s|) \) [Maneth&Bussato 2004]
 - Navigation (up/1\(^{st}\) child/next sibling) on the representation can be done in P only if the MTT \(\tau \) is a path-linear.

- Corollary: \(MTT_{OI} \) Translation Membership is in NP
 - Proof is by the ‘Garbage-Free’ form in the next page…
k-Compositions of MTTs:

Translation Membership for MTT_{OI^k} **and** MTT_{IO^k}

- MTT_{OI^k} $(k \geq 1)$ Translation Membership is NP-complete
 - Proof is by the Garbage-Free Form [Inaba&Maneth 2008]

 Any composition sequence of MTT_{OI}’s
 - $T = T_1 ; T_2 ; \cdots ; T_k$ can be transformed to a "Garbage-Free" sequence of path-linear MTT_{OI}’s
 - $T = \rho_1 ; \rho_2 ; \cdots ; \rho_{2k}$ where for any (s,t) with $t \in T(s)$, there exists intermediate trees
 - $s_1 \in \rho_1(s)$, $s_2 \in \rho_2(s_1)$, …, $t \in \rho_{2k}(s_{2k-1})$ such that $|s_i| \leq c |t|$

 ➔ by NP-oracle we can guess all s_i’s

- MTT_{IO^k} $(k \geq 2)$ Translation Membership is NP-complete
 - Proof is by Simulation between IO and OI [Engelfriet&Vogler 1985]
 - $MTT_{OI} \subseteq MTT_{IO}$; MTT_{IO} and $MTT_{IO} \subseteq MTT_{OI}$; MTT_{OI}
MAIN RESULT: TRANSLATION MEMBERSHIP FOR MTT_{IO}

- MTT_{IO} Translation Membership is in PTIME
 (for an mtt with k parameters, O(n^{k+2}))

- Proof is based on the Inverse Type Inference
 [Engelfriet&Vogler 1985, Milo&Suciu&Vianu 2000]

For an MTT \(\tau \) and a tree \(t \), the inverse image \(\tau^{-1}(t) \) is a regular tree language

- Instead of “\(t \in \tau(s) \)”, check “\(s \in \tau^{-1}(t) \)”
 - First, construct the bottom-up tree automaton recognizing \(\tau^{-1}(t) \)
 - Then, run the automaton on \(s \).

PITFALL
The automaton may have \(2^{|t|} \) states in the worst case.

PTIME SOLUTION
Do not fully instantiate the automaton. Run it while constructing it on-the-fly.
EXAMPLE (1)

\(\mathbf{T} = \{ \text{st}(A(x_1)) \rightarrow \text{db}(x_1, \text{db}(x_2, E)) \}
\)

\(\text{db}(A(x_1), y_1) \rightarrow \text{db}(x_1, \text{db}(x_2, y_1)) \)

\(\text{db}(B, y_1) \rightarrow F(y_1, y_1) \)

\(\text{db}(B, y_1) \rightarrow G(y_1, y_1) \)

\[s = A(B), \quad t = F(G(E,E), G(E,E)) \]

State of the inverse-type automaton :: \(\{ \text{st} \} \cup (\{ \text{db} \} \times V(t)) \rightarrow 2^V(t) \)

- We assign the state \(q_A \) such that:
 \[
 \begin{align*}
 q_A(\text{st}) &= \emptyset \\
 q_A(\text{db}, E) &= q_B(\text{db}, q_B(\text{db}, E)) = \emptyset \\
 q_A(\text{db}, G(E,E)) &= q_B(\text{db}, q_B(\text{db}, G(E,E))) = \emptyset \\
 q_A(\text{db}, F(G(E,E), G(E,E))) &= \emptyset
 \end{align*}
 \]

- We assign the state \(q_B \) such that:
 \[
 \begin{align*}
 q_B(\text{st}) &= \emptyset \\
 q_B(\text{db}, E) &= \{ G(E,E) \} \quad // F(E,E) \notin V(t) \\
 q_B(\text{db}, G(E,E)) &= \{ F(G(E,E), G(E,E)) \} \quad // G(G,G) \notin V(t) \\
 q_B(\text{db}, F(G(E,E), G(E,E))) &= \emptyset
 \end{align*}
 \]
EXAMPLE (2)

- \(T = \{ \text{st}(A(x_1)) \rightarrow \text{db}(x_1, \text{db}(x_1, E)) \}
- \text{db}(A(x_1), y_1) \rightarrow \text{db}(x_1, \text{db}(x_1, y_1))
- \text{db}(B, y_1) \rightarrow F(y_1, y_1)
- \text{db}(B, y_1) \rightarrow G(y_1, y_1)

s = A(B),
\text{t = } F(G(E,E), F(E,E))

State of the inverse-type automaton :: \(\{ \text{st} \} \cup (\{ \text{db} \} \times V(t)) \rightarrow 2^{V(t)} \)

\begin{align*}
q_A(\text{st}) &= q_B(\text{db}, q_B(\text{db}, E)) = q_B(\text{db}, \{ G(E,E), F(E,E) \}) = \emptyset \\
q_A(\text{db}, E) &= q_B(\text{db}, q_B(\text{db}, E)) = \emptyset \\
q_A(\text{db}, G(E,E)) &= q_B(\text{db}, q_B(\text{db}, G(E,E))) = \emptyset \\
q_A(\text{db}, F(E,E)) &= q_B(\text{db}, q_B(\text{db}, F(E,E))) = \emptyset \\
q_A(\text{db}, F(G(E,E), G(E,E))) &= \ldots = \emptyset \\
\end{align*}

\begin{align*}
q_B(\text{st}) &= \emptyset \\
q_B(\text{db}, E) &= \{ G(E,E), F(E,E) \} \\
q_B(\text{db}, G(E,E)) &= \emptyset \quad // F(G,G) \text{ and } G(G,G) \notin V(t) \\
q_B(\text{db}, F(E,E)) &= \emptyset \quad // F(F,F) \text{ and } G(F,F) \notin V(t) \\
q_B(\text{db}, F(G(E,E), F(E,E))) &= \emptyset \quad // \ldots
\end{align*}
NOTE

- **Complexity:**
 - At each node of s, one function of type \(\{st\} \cup \{db\} \times V(t) \rightarrow 2^V(t) \) is computed
 - \(\{st\} \cup \{db\} \times V(t) \rightarrow 2^V(t) \equiv 2^{V(t) \times (\{st\} \cup \{db\} \times V(t))} \)
 - Each function is of size \(O(|V(t)|^2) \), which is computed per each node \((O(|s|) \text{ times}) \) (and, computation of each entry of the function requires \(O(|t|^2) \) time) \(\rightarrow O(|s| |t|^4) \) time

- \(\text{MTT}_{OI} \) also has regular inverse image, but the inverse-type automaton may have \(2^2^{|t|} \) many states in the worst case
 - Computing even a single state requires EXPTIME
SEVERAL EXTENSIONS

- Variants of MTTs with PTIME Translation Membership
 - **MTT\textsubscript{IO} with TAC-look-ahead**
 - Rules are chosen not only by the label of the current node, but by a regular look-ahead and (dis)equality-check on child subtrees

 \[
 \begin{array}{ll}
 f(A(x_1, x_2)) \text{ s.t. } x_1 \equiv x_2 & \rightarrow C(f(x_1)) \\
 f(A(x_1, x_2)) \text{ s.t. } x_1 \text{ has even number of nodes} & \rightarrow D(f(x_1), f(x_2)) \\
 f(A(x_1, x_2)) \text{ otherwise} & \rightarrow E(f(x_1), f(x_2))
 \end{array}
 \]

 - **Multi-Return MTT\textsubscript{IO}**
 - Each function can return multiple tree fragments (tuples of trees)

 \[
 \begin{array}{l}
 f(A(x_1, x_2)) \rightarrow \text{let } (z_1, z_2) = g(x_1) \text{ in } D(z_1, C(z_2)) \\
 g(A(x_1, x_2)) \rightarrow (f(x_1), f(x_2))
 \end{array}
 \]

 - **Finite-copying MTT\textsubscript{OI}**
 - OI, but each parameter is copied not so many times.

As long as the inverse type is sufficiently small, we can apply the same technique.
CONCLUSION AND OPEN PROBLEMS

- Complexity of Translation Membership is
 - NP-complete for
 - MTT_{0i}^k ($k \geq 1$), MTT_{1o}^k ($k \geq 2$)
 - Higher-Order MTT, Macro Forest TT, ...
 - PTIME for
 - MTT_{1o} (+ look-ahead and multi-return)

- Open Problems
 - MTT_{0i} with at most one accumulating parameter
 - Our encoding of SAT used 3 parameters, which actually can be done with 2. How about 1?
 - MTT_{1o} with holes [Maneth\&Nakano PLAN–X08]
 - It is an extension of IO MTTs, but has more complex inverse-type.
THANK YOU!