The Complexity of Tree Transducer Output Languages

FSTTCS 2008, Bengaluru

The Univ. of Tokyo Kazuhiro Inaba
NICTA, and UNSW Sebastian Maneth
“Complexity of Output Languages”

- Given...
 - A language \(L \subseteq T_\Sigma \) (Trees over \(\Sigma \))
 - A relation (nondeterministic translation)
 \(\tau \subseteq T_\Sigma \times T_\Delta \) (from \(T_\Sigma \) to \(T_\Delta \))

- What is the complexity of the language \(\tau(L) \subseteq T_\Delta \)?

 (i.e., for \(t \in T_\Delta \), how is it computationally hard to determine whether \(t \in \tau(L) \) or not?)
Classic Results

- τ: Program of Turing-Machine
 - Undecidable

- L: Regular String Language

- τ: Nondeterministic Finite State Transduction
 - $\tau(L)$ is regular!
 - The membership of $\tau(L)$ is solved in $O(n)$ time, $O(1)$ space

- Corollary: for $\tau \in$ Finitely Many Compositions of Nondeterministic FST, $\tau(L)$ is regular
Trees?

- L: Regular Tree Language
- τ: Finitely Compositions of Nondet. Finite-State Tree Transducers
 - Beyond Regular Tree Language
 - (Intuitively…) Due to Copying
 - $\tau(t) \rightarrow x(t, t)$ is an instance of FSTT
 - In $\text{DSPACE}(n)$ [Baker1978]
 - i.e., Deterministic Context-Sensitive
Recent Result [Maneth2002, FSTTCS]

- L : Regular Tree Language
- τ: Finite Compositions of Total Deterministic Macro Tree Transducers
 - $\exists \Rightarrow$ Tree Transducers extended with “accumulating parameters” for each state
 - In $\text{DSPACE}(n)$
 - Still, Deterministic Context-Sensitive
Today’s Target!

- L: Regular Tree Language
- τ: Finite Compositions of Nondeterministic Macro Tree Transducer

- Is it still context-sensitive? – Yes. $\text{NSPACE}(n)$
- What about the time complexity? – NP-complete
Outline

- What is/Why Macro Tree Transducers?
- Review of the Proof for Deterministic Case
 - “Garbage-free” Lemma
 - “Translation Membership” Problem
- Summary
Macro Tree Transducer (MTT)

- Q: Finite Set of States
- q_0: Initial State
- Σ: Input Alphabet
- Δ: Output Alphabet
- R: Set of Rewrite Rules of form:

 \[
 <q, \sigma(x_1,\ldots,x_k)>(y_1,\ldots,y_m) \rightarrow r
 \]

 where $r ::= \delta(r,\ldots,r) \mid <q,x_i>(r,\ldots,r) \mid y_j$
Example of an MTT

- `<q0, a(x)>()` → f(`<q1, x>(a(e)), <q2,x>())
- `<q0, b(x)>()` → f(`<q1, x>(b(e)), <q2,x>())
- `<q1, a(x)>(y)` → `<q1, x>(a(y))`
- `<q1, b(x)>(y)` → `<q1, x>(b(y))`
- `<q1, e>(y)` → y
- `<q2, a(x)>()` → a(`<q2,x>()`)
- `<q2, b(x)>()` → b(`<q2,x>()`)
- `<q2, e>()` → e

<q0, a(b(b(e)))>()
→ f(`<q1,b(b(e))>(a(e)), <q2,a(e)>())
→ f(`<q1,b(e)>(a(a(e)), <q2,a(e)>())
→ f(`<q1,e>(a(a(a(e))), <q2,a(e)>()) → ...
(Choice of Semantics)

- Functional Programming + Laziness + Nondeterminism 😊

- We take the Runtime-Choice Semantics:
 - \(<\text{coin, a}> \rightarrow 0 \mid 1\>
 - \(<\text{twocoin}, a> (y) \rightarrow c(y, y)\>
 - \(<\text{twocoin}, a> (\langle \text{coin, a> () } \rangle) \rightarrow *\>
 - \{ c(0,0), c(0,1), c(1,0), c(1,1) \}

- Because of its composability: \(\text{MTT} ; \text{LT} \subseteq \text{MTT}\)
MTT*(REGT)
= PTT*(REGT)
= ATT*(REGT)
= ...

DtMTT*(REGT)

IO-Hierarchy
Context Free

OI-Hierarchy

MSOTT*(REGT)

T*(REGT)

Regular
Review:

DSpace(n) Membership for Det. MTTs

- Given a (fixed) pair of
 - Input regular language L and
 - Composition sequence $\tau_1; \ldots; \tau_n$ of total deterministic MTTs

- and a tree t,

- How can we test $t \in (\tau_1; \ldots; \tau_n)(L)$ in linear space wrt $|t|$?
Review:

DSPACE(n) Membership for Det. MTTs

- Guess the input $s \in L$
- Calculate $(\tau_1 ; \ldots ; \tau_n)(s)$
- If $(\tau_1 ; \ldots ; \tau_n)(s) = t$, then t is in the output language!
- Otherwise, try another input tree s

Is this a possible output from $\tau_1 ; \ldots ; \tau_n$?
Review:

DSPACE(n) Membership for Det. MTTs

- In order to carry out the algorithm in $\text{DSPACE}(|t|)$ …
 - The sizes $|s|, |s_1|, |s_2|, \ldots, |s_n|$ must be linearly bounded by $|t|$
 - i.e., there must be a constant c independent from t s.t. $|s| \leq c|t|$
 - Each step τ of the computation must be done in linear space

The translation must have ‘no garbage’!
Review:

DSPACE(n) Membership for Det. MTTs

- **‘Garbage-Free’ Lemma**
 - For any input language L and mtt τ_1, \ldots, τ_n, there exists L' and τ'_1, \ldots, τ'_n such that
 \[(\tau_1;\ldots;\tau_n)(L) = (\tau'_1;\ldots;\tau'_n)(L')\]
 and every τ'_i is ‘non-deleting’ ($|in| \leq 2|out|$)

- **Linear Time (and Space) Computation**
 - For any total deterministic mtt τ and a tree s, $\tau(s)$ can be computed in time $O(|s| + |\tau(s)|)$
 (already known as a folklore result)
NSPACE(n)/NP Output Membership for Nondeterministic MTTs

- Guess the input $s \in L$ and all the intermediate trees s_1, \ldots, s_{n-1}
- Check whether $(s, s_1) \in T_1$, $(s_1, s_2) \in T_2$, \ldots, $(s_{n-1}, t) \in T_n$
- If it is, then t is in the output language!
- Otherwise, try another s, s_2, \ldots, s_{n-1}
Key Lemmas

- NP/NSPACE(n) “Translation Membership” for a single mtt translation
Key Lemma (1):

Basic Idea

- “Factor out” the deletion

\[T_1 ; T_2 \equiv T_1 ; (D ; T'_{2}) \]
\[\equiv (T_1 ; D) ; T'_{2} \]
\[\equiv \rho_1 ; T'_{2} \]

- Decompose \(T_2 \) to ‘deleting part’ \(D \) and ‘nondeleting’ \(T'_{2} \)
- Associativity
- Compose \(T_1 \) with \(D \)
Three Types of Deletion

- **“Erasure”**
 - \(<q,\sigma>(y_1, y_2) \rightarrow y_1 \)
 - No new output node is generated at this \(\sigma \) node. Only returning its parameter.

- **“Input-Deletion”**
 - \(<q, \sigma(x_1, x_2)>() \rightarrow \delta(<q, x_1>()) \)
 - Discarding the “\(x_2 \)” subtree!

- **“Skipping”**
 - \(<q, \sigma(x_1)>() \rightarrow <q, x_1>() \)
 - Occurs only at monadic node. No new output is generated here. Just going down to its child node.

Lemma:
If no erasing, input-deleting, or skipping rule is used during the computation, then \(|\text{in}| \leq 2|\text{out}|\)
Eliminating
The Three Types of Deletion

- Achieved by heavily manipulating the rules
 - For details, please consult the paper

- One of the difficulties compared to the deterministic case: **Inline-Expansion**
 - \(<q, a> (y) \rightarrow y\)
 - \(<q, b(x_1,x_2)> \rightarrow c(<p,x_1>(<q,x_2>(e)))\)
 (Assume we know that ‘b’’s child is always ‘a’)
 - \(<q, b(x_1,x_2)> \rightarrow c(<p,x_1>(e))\)
With Nondeterminism, Inline-Expansion is Not Easy

- \(\langle q, a() \rangle \rightarrow e \)
- \(\langle q, a() \rangle \rightarrow f \)
- \(\langle q, b(x)() \rangle \rightarrow \langle p, x\rangle(\langle q, x() \rangle) \)
- \(\langle p, a\rangle(y) \rightarrow c(y, y) \)

Different Translation!

- \(\langle q, b(a)() \rangle \rightarrow \langle p, a\rangle(\langle q, a() \rangle) \)
- \(\rightarrow c(\langle q, a() \rangle, \langle q, a() \rangle) \)
- \(\rightarrow c(e, f) \)
Solution:
“MTT with Choice and Failure”

- We have extended MTTs with “inline” nondeterminism
 - Allows inline-expansion for free!
 - Actually, we prove the output language complexity for mtt-cfs

\[
\begin{align*}
&<q, a>() \rightarrow e \\
&<q, a>() \rightarrow f \\
&q, b(a)() \rightarrow <p,a>(+ (e,f)) \\
&c(+ (e,f), + (e,f)) \rightarrow c(e, f) \\
&q, b(x)() \rightarrow <p,x>(+ (e,f)) \\
&p, a(y) \rightarrow c(y, y)
\end{align*}
\]
Key Lemma (2):
“Translation Membership” of single τ_i

- Given a pair (s_{i-1}, s_i) of trees, we can determine whether $(s_{i-1}, s_i) \in \tau_i$ in linear-space & polynomial time wrt $|s_{i-1}| + |s_i|$ in nondet. Turing machine

- Naively Applying the folklore deterministic computation takes $O(|s_{i-1}| + |\tau(s_{i-1})|)$ time/space → New Idea is Necessary
“Translation Membership” of single τ_i

- Naively Applying the Linear Time Computation for Deterministic MTTs:
 - Fails.
 - It relied on the decomposition of an MTT into Linear MTTs (each input variable x_i occurs at most once in each rule),
 - ...and the fact that deterministic linear MTTs read each input node at most once,
 - ...which allows to compress the output tree as a DAG for both saving space and sharing computations.

- Need More Sophisticated Compression!

- Bad. Nondet. Linear MTTs may read each node multiple times

- OK. Similar decomposition works also for Nondet. MTTs

- Linear
Example: Linear Nondet. MTT
Reading Some Node Twice

- \(<q, b(x_1, x_2)>() \) \rightarrow \(<p, x_1>(<q, x_2>()) \)
- \(<q, a>() \) \rightarrow \ e
- \(<q, a>() \) \rightarrow \ f
- \(<p, a>(y) \) \rightarrow \ g(y, y) \)
Solution: Compression by Context-Free Tree Grammar

- The set all outputs $\tau_i(s_{i-1})$ of an MTT can be represented by a CFTG of size proportional to $|s_{i-1}|$ [MB04]

- Navigation (up, 1st child, nextsibl) on the compressed representation is efficient for linear mtts
Summary

- Composition sequence $\tau_1 \ldots \tau_n$ of mtts can be converted to an equivalent ‘garbage-free’ composition.
- Translation Membership of any mtt is in NP/NSPACE(n).

\rightarrow Altogether, the output language complexity of mtt-compositions is NP/NSPACE(n).
- Corollary: OI-hierarchy, PTT*(REGT), ATT*(REGT), … is in NP/NSPACE(n).
- Current Status (Unpublished): NSPACE(n) \rightarrow DSPACE(n).