Decompositions
of Higher-Order Grammars
to First-Order Transducers

Kazuhiro Inaba

Regular Language

Input: a string t

O(I t I)time
Determine if t belongs to
a regular language O(1)space

(0] 1(0(1*0)+)* 1)+

Context-Free Language

Input: a string t

O(1t]?)tme

= the order of matrix multiplication

O((log|t])?)seace

E ::=T | T+ T | T-T
T::=F | F*F | F/F
F::=(CE) | @] 1IN
N ::=0 | 12| o6N | 1IN

MacrO I_a nguage [Fischer68, Aho68, Rounds73]

* Nonterminals of CFG
has type :: string. N P-complete

* MG can have string->string

ZJ:C(.string, string)->string, O(I t I)space

S() ::=T(,)
T(X,Y,2)
::= T(ax,by,cz)
| xyz

Higher-Order Tree Garmmers

* ((tree->tree)->tree)->tree ? 29979

e o o o time

. etc.

2922? ac
S . 1= TWICE(X)
TWICE(Ff) ::= f(f(1)) N
X(e) = Plus(e, e)

”\ Minus(e, e) [\ L)\

Goal of Today’s Talk (1)

For “safe” subset of higher order grammars,
it is still:

NPtime
O(I t I)space

[Inaba09] K. Inaba, “Complexity and Expressiveness of Models of XML Transformations”, Dissertation

Goal of Today’s Talk (2)

Conjecture:
For any higher order grammars, it is still:

NPtime
O(I t I)space

Caution:

* |n this talk, we concentrate on the complexity
with respect to the size of the input tree t.

 Regard grammar G as fixed.

 “O(|t])space” means “O(|t| f(| G!)) space”.
— Indeed, f(x) = n-EXP where n is the highest order.

Overview of Our Approach

1) Introduce HTT: Higher-order Tree Transducers
— A slight generalization of higher-order grammars.
— Examine the problem:“Can t be an output of a HTT?”

N, A

Overview of Our Approach

2) First Order Decomposition

— Show order-n HTT is simulatable by n composition
of first order HTTs.

> ® o
&;A JA

Overview of Our Approach

3) “Garbage Free Form”

— Show that we can transform the HTTs so that all
intermediate trees are smaller than t.

a0 ®j>- .A.AA
. A

Overview of Our Approach

4) Subproblem: translation membership

— Given trees s1, s2 and 1-HTT t, can we determine
“1(s1)2s2 ?” in NP / O(|s1|+]|s2]|) space?

) .A.AA
y |

Overview of Our Approach

5) Wrap up! Given HTT G and a tree t,

- Convert G to garbage-free 15t order composition
- “Guess” (by NP / O(n) space) all intermediate trees s,.
- Check each translation membership.

@) G

Faa P P2 o D,

ST YY)

HTT [Engelfriet&Vogler 88]

Higher-order “single-input” “safe” tree transducer

Mult :: Tree > Tree
Mult(Pair(x;,%x,)) =» Iter(x,;)(Add(x,))(Z)

Iter :: Tree - (Tree - Tree) > Tree > Tree

Iter(S(x))(f)(y) = Iter(x)(f)(f(y))
Iter(Z)(f)(y) 2y

Add :: Tree - Tree - Tree

Add(S(x))(y) = Add(x)(5(y))
Add(Z) (y) 2y

HTT

e Set of mutually recursive functions

— Defined in terms of induction on a single input tree
* Input trees are always consumed, not newly constructed
* Output trees are always created, but not destructed

— Rest of the parameters are ordered by the order
* Multiple parameters of the same order is ok but in uncurried form

Inductive Input Param Order-1 Param(s) Order-0 Param(s) Result

e = S &

Iter :: Tree > (Tree > Tree) > Tree -2 Tree

Iter(S(x))(f)(y) =2 Iter(x)(f)(f(y))
Iter(Z)(f)(y) >y

HTT

Nondeterminism (// and L)

Subseq :: Tree > Tree

Subseqg(Cons(x,xs)) =» Cons(x, Subseq(xs))
/| Subseq(xs)

Subseq(Nil) = Nil

Subseqg(Other) = |

In this talk, evaluation strategy is unrestricted (= call-by-name).
But call-by-value can also be dealt with.

HTT

* Notation: n-HTT

— is the class of Tree>Tree functions
representable by HTTs of order = n.

— {Subseq}is O-HTT, {Mult, Iter, Add}E2-HTT

Subseq :: Tree > Tree

Mult :: Tree = Tree
Iter :: Tree =2 (Tree > Tree) =2 Tree =2 Tree

Add :: Tree = Tree = Tree

Order-n to Order-1

THEOREM [EV88] [EV86]
(Nn-HTT) & (1-HTT)"
n-th order tree transducer is representable

by a n-fold composition of 15t-order tree
transducers.

[EV86] J. Engelfriet & H. Vogler, “Pushdown Machines for Macro Tree Transducers”, TCS 42
[EV88] —, “High Level Tree Transducers and Iterated Pushdown Tree Transducers”, Acta Inf. 26

Proof: n-HTT = 1-HTT o (n-1)-HTT

Idea:

Represent 15t-order term Tree=>Tree by a Tree.

F :: Tree -2 Tree—>Tree

F(Z)(y) =2 S(5(y))

F :: Tree = Tree
j> F(Z) = S(5(Y))

Represent 15t-order application symbolically, too.

. D> F(x)(2)

$. D> @(F(x), Z)

Proof: n-HTT = 1-HTT o (n-1)-HTT

Represent 1%t-order things symbolically.

F :: Tree - Tree

F(Z) D S(5(Y)) . =2 @(F(x), 2)
Then a 1-HTT performs the actual “application”.

Eval(@(f, b))(y)=> Eval(f, Eval(b)(y))
Eval(Y)(y) >y

Eval(S(x))(y) = S(Eval(x)(y))
Eval(Z)(y) > VA

Mult(Pair(xy,X,))=> @(Iter(xy) (Add(x5)), Z)
Iter(S(x))(F) = @(Iter(x)(f), acf, v))

Tter(z) () > Y
Add(S(x)) = @(Add(x),s(Y))
Add(z) > Y

MUTt(Pair(s(2).5(2))) @ @

e Iter(s(2)) (Add(s(2)) | | 2] @ e
@ & = e 2
[@j @@ [@] j Iter(z) (Add(s(2))) [@

C Add(s(z) Y
. Qe [@j @ @[]

n Add(5(2)) Example

Eval(@(f, b))(y)=> Eval(f, Eval(b)(y))
Eval(Y)(y) =y

Eval(S(x))(y) = S(Eval(x)(y))
Eval(Z)(y) = 7

. Eval (@,y= Z)

eval((e], y=1) - W &
e| [z] Eval(le], y=/2) 2 Z\\B

[@ [@j Eval (a,y=Eva1 (@,y: z)
f v B Ugh EE
DDl s vos

))

Y Y Y

./ \— —

Why That Easy

* Relies on the ordered-by-order condition.

— No variable renaming is required! [Blum&Ong 09]

Eval (,y=Eva1@,y= Z)
e v
Yos

[BOO09] W. Blum and C.-H. L. Ong, “The Safe Lambda Calculus”, LMCS 5

Decomposed.

Next, Make Intermediate Trees Small.

y VRRETTY

THEOREM [I. & Maneth 08] [I. 09]* Improvement)

V1, . T,EL-HTT, 37, E0-LHTT, Uy, ..., T, E1-HTT,
for any (T,0...oTy)(s) D,
there exist T (s)Dsy, Ti(s) D5, 5] =154, 5,=

@JU

Y

|s| = number of nodes

[IMO8] K. Inaba & S. Maneth, “The complexity of tree transducer output languages”, FSTTCS

[Inaba09] K. Inaba, “Complexity and Expressiveness of Models of XML Transformations”, Dissertation

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

A/\®AE>:> A@A

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

ENECMIEN

I Ye ﬁﬁ\%ﬁ

How to Construct the “Garbage-Free” Form
Make each 1-HTT “productive”

by separating its “deleting” part,
and fuse the deleter to the left [en7s,771[Envoss][Enma02]

At/\ A= EE= Y

Repeat Split

, R
EBIENEN TN ES
Fusef 4 N [N\
LT JLT Tagg Ty
Split
4 4 4 ’ N 7 ’ N [’ N\
ENEN (NN
Fuse 4 N [N [N\
)) 4
T T T T
ol LT 2344 3 I T,
, — : I
LA W v, v,
e N\) ’ Ya ’ ~
Split _ VTq2349 JL T Ty U,
) e) N\ O) ’ Ya ’ ~
tlﬁddl L] L) Ty J U,

Key Part

Separate the “deleting” transformation

= Te i T
/\:>A=/\:> A o A

Key Part

slogan: Work on every node

(", must generate at least one node for each input node)

[T’dd M T, }
> A ® A

Work on Every Node = Visit All Nodes

Deleting HTTs

G(Z)(y,) D Z /| v, [}
F(S(X15%,)) & F(x,) | €
/I E(x,)
I G(xq) (F(x,))

may not recurse down to a subtree.

Work on Every Node = Visit All Nodes

F(S(X15%5)) =2 G(Xxg) (F(X3))
Nondeterministically delete every subtree! @ ’
T 4ol

Del(S(xy,%,)) =
S12(Del(x,),Del(x,)) / S1_(Del(x,))
/S 2(Del(x,)) // S ()

F(S12(X1,%;,)) =2 G(Xy) (F(X;))
At least one choice = (51_(X1)) -> G(Xl) (1)
of nodeterminism - (5_2 (Xz)) > |

“deletes correctly”. ~
F(S_0) >L [y
n

Work on Every Node = Work on Leaf

Erasing HTTs

F(S(x)) =2 G(x)(Z)
G(Z)(y) 2 ¥y

may be idle at leaves.

Work on Every Node = Work on Leaf

Erasing HTTs

F(S(x)) =2 G(x)(Z)
G(Z)(y) 2 ¥y

Inline Expansion F(S(2)) =& 7 [t’n }

Work on Every Node
= Work on Monadic Nodes

Skipping HTTs

F(S(X))(V1Y55Y3) 2 F(OX)(Vy,Y3,Y3)
F(Z)(Y1,Y2,Y3) => Done(y;,Y,,Ys)

are good at juggling.

Work on Every Node
= Work on Monadic Nodes

Skipping HTTs

F(S(Xx))(Y32¥5.Y3) 2 F(X)(V,,V3,Y;)
F(Z)(Y1,Y2,¥3) 2 Done(yy,Y,,Y3)

Nondeterministic deletion again.
Remember how arguments would’ve been shuffled. v

:(2123)()’1:)’2:)’3) -> Done(yl:)’z:)’3)
F(Z231)(Y15Y25,Y3) = Done(y,,Ys3>Y1)
F(Z2312) (Y1, Y2,Y3) =2 Done(yg,yl,yz)ﬂ

T, }

Simple Arithmetic

Input size = #leaf + #monadic + #others
— For each leaf on the input, generate =1 node.
— For each monadic node, generate =1 node.

— Thus, #leaf + #monadic = Output size.

For any tree, #others < #leaf = Output size.
Add: #leaf + #monadic + #others = Output size*2

So, Input size < Output Size * 2

Work on Nodes with Rank-2,3,...

* Input size < Output Size * 2

Fr(Bin(X;,X;))(y) =2 Fr(xy)(Fr(x;)(y))
Fr(A)(y) =2 A(y)
Fr(B)(y) =2 B(y)

This bound is sufficient for deriving the results,
but we can improve this to Input size = Output Size,
by deterministic deletion of leaves + inline expansion.

Donel
Intermediate trees are small!

[T'dd M L }
/\:> A s A

Next.
“Translation membership problem”

B-.

AAQ
!

Translation Membership

Given trees s1, s2 and t, can we determine
“1(s1) 252 ?” in NP / O(|s1|+|s2]|) space?

From the construction, tis always
— 1t order HTT

— Non-deleting/erasing/skipping. @
— Path-linear: recursive call to the same A
child node will not nest. A
 OK: Node(f(x), g(x)) BAD: f(x, g(x))
* = height(s2) € O(|s1])

Example

S(x) 2 F(x)(d)
t |FA(xL,x2))(y) &> F(x1)(a(F(x2,y)))
F(B(x1,x2))(y) =2 F(x2)(B(F(x2,y)))

F(C)(y) 2> [(y)
o~
sl A) @ s2
B (C |
© ©
(@

©

Basic ldea:
Just compute t(sl) and compare.
S(x) 2 F(x)(L)

t |FA(xL,x2))(y) &> F(x1)(a(F(x2,y)))
F(B(x1,x2))(y) = F(x2)(B(F(x2,y)))

F(C)(y) 2> I (y)
r ©
sl A 2 1(s1) o s2
8 (© f |
© © a

@)
8

Key Points

* 1(s1) may be very big
=» Compute t(sl) incrementally. If it becomes larger
than s2, return false immediately.

* T may be nondeterministic

=>» For NP algorithm, use the nondeterminism.
“non-deleting” property ensures polynomial choices.
=>» For linear space algorithm, do back-track search.
The “call-stack” is linear-size bounded (next page),
so it can be done in linear space.

Each node corresponds to

a “call-stack”
S(x) D LF(x)(a)
F(A(XL,x2)) (y) > ' ZF(x1) (a(F(x2,y)))
F(B(x1,x2))(y) & 3F(x2) (6)B(F(x2,y)))

F(C) (y) > @&y
1 @ '82) pwEsuse g 52
{ e |
© © a
| B

©

A

Summary

o Safe n-HTT =» (1-HTT)"
* Split input-deletion

* Split erasing

* Split skipping et
* Fuse deleter E
* Translation membership < -

What about UNSAFE HTT?

UNSAFE n-HTT =» (1-stack-HTT)"
— ???: Now variable names matter. Use De Bruijn index.
Split input-deletion

— OK: same technique works (nondet deletion)
Split erasing

— OK: same technique works (inline expansion)

Split skipping
— 999999222222222222227

Fuse deleter
— OK: same technique works (product construction)

Translation membership
— OK: same technique works (call-stack size argument)

Stack-HTT

 Parameters are now passed as a stack.

F :: Tree -> Stack<Tree> - Tree
FCADD(x)) (..., y1, y2) _ POPI
=2 F(x)(..., PLUS(yl, y2))
F(SUB(x)) (..., yl, y2)
=2 F(x)(..., MINUS(yl, y2))
F(ONE(x))(...) > F(x)(..., 1)
F(EOP)(F) (..., y) =y

Unsafe substitution =2 Stack HTT

(A AV AR YIBNC) | evalcabcie),)
L B
CAAALO)BIC) |
. 9}
Eval(@(f, a))(...)
@] B = Eval(f)(..., Eval(a)(...))
- | Eval(s(x))(...,y)
ﬁﬂEﬁ& ® = Eval(x)(...)
- _':] Eval(z)(...,y) =y

n-Unsafe-HTT = Substitution

F(o(x...))(y0)...(yn)(z) = rhs where z :: tree

F(o(x...))(y0)...(yn) = [[rhs]],

* [[elli=s(llell) if e :: tree
* [[yillp=s(yi) if yi :: tree
* [[z]]l=z2

o [[x(...)]I, = xC[[.--1sq) iF x(...) :: tree->tree

* [[el(e2)]], = @([[ei]l]y.1, [[€, 1],) if € :: tree->tree

* [[esley)]l =1le;]l ([le;]l,) otherwise |
...something like this (the above presentation

may not be correct) should work, | hope!

Example

| :: tree

| 9 S(A) | 9 @(S, A)

S :: tree -> tree

S(x) = F(G(F(x))(B))(C >
(x) =2 F(G(F(x))(B))(C) @(F(s(@(G(F(s(s(2)))), B))), C)

F:: tree -> tree -> tree

F(x)(y) = D(x, y) F(x) = D(x, z)

G :: (tree->tree) -> tree -> tree

G(u)(x) = u(x) G(u) > @(u, 2)

e
e

=)

A

Example

| 2 @(S, A)

S->
@(F(s(@(G(F(s(s(z)))), B))), C)

F(x) 2 D(x, z)

G(u) 2 @(u, z)

