Decompositions of Higher-Order Grammars to First-Order Transducers

Kazuhiro Inaba

Regular Language

Input: a string t

Determine if t belongs to a regular language

$$(0 | 1 (0 (1*0)+)* 1)+$$

O(| t |) time
O(1) space

Context-Free Language

Input: a string t

$$O(|t|^{\omega})_{\text{time}}$$
 = the order of matrix multiplication}
$$O(|og|t|)^{2})_{\text{space}}$$

```
E ::= T | T + T | T - T

T ::= F | F * F | F / F

F ::= ( E ) | 0 | 1N

N ::= 0 | 1 | 0N | 1N
```

Macro Language [Fischer68, Aho68, Rounds73]

- Nonterminals of CFG has type :: string.
- MG can have string->string or (string, string)->string, etc.

O(|t|) space

NP-complete

```
S() ::= T(,,)
T(x,y,z)
::= T(ax,by,cz)
| xyz
```

Higher-Order Tree Garmmers

- ((tree->tree)->tree
- etc.

```
???? time
```

????? space

Goal of Today's Talk (1)

For "safe" subset of higher order grammars, it is still:

Goal of Today's Talk (2)

Conjecture:

For any higher order grammars, it is still:

NP time
O(|t|) space

Caution:

• In this talk, we concentrate on the complexity with respect to the size of the input tree t.

Regard grammar G as fixed.

- "O(|t|) space" means "O(|t| f(|G|)) space".
 - Indeed, $f(x) \ge n$ -EXP where n is the highest order.

- 1) Introduce HTT: Higher-order Tree Transducers
 - A slight generalization of higher-order grammars.
 - Examine the problem: "Can t be an output of a HTT?"

2) First Order Decomposition

 Show order-n HTT is simulatable by n composition of first order HTTs.

- 3) "Garbage Free Form"
 - Show that we can transform the HTTs so that all intermediate trees are smaller than t.

- 4) Subproblem: translation membership
 - Given trees s1, s2 and 1-HTT τ , can we determine " $\tau(s1) \ni s2$?" in NP / O(|s1|+|s2|) space?

- 5) Wrap up! Given HTT G and a tree t,
 - Convert G to garbage-free 1st order composition
 - "Guess" (by NP / O(n) space) all intermediate trees s_k .
 - Check each translation membership.

HTT [Engelfriet&Vogler 88]

Higher-order "single-input" "safe" tree transducer

```
Mult :: Tree → Tree
Mult(Pair(x_1, x_2))
                              \rightarrow Iter(x<sub>1</sub>)(Add(x<sub>2</sub>))(Z)
 Iter :: Tree \rightarrow (Tree \rightarrow Tree) \rightarrow Tree \rightarrow Tree
Iter(S(x))(f)(y) \rightarrow Iter(x)(f)(f(y))
Iter(Z)(f)(y)
                              → y
 Add :: Tree \rightarrow Tree \rightarrow Tree
Add(S(x))(y) \rightarrow Add(x)(S(y))
                      → y
Add(Z)(y)
```

HTT

- Set of mutually recursive functions
 - Defined in terms of induction on a single input tree
 - Input trees are always consumed, not newly constructed
 - Output trees are always created, but not destructed
 - Rest of the parameters are ordered by the order
 - Multiple parameters of the same order is ok but in uncurried form

```
Inductive Input Param Order-1 Param(s) Order-0 Param(s) Result

Iter:: Tree \rightarrow (Tree \rightarrow Tree) \rightarrow Tree

Iter(S(x))(f)(y) \rightarrow Iter(x)(f)(f(y))

Iter(Z)(f)(y) \rightarrow y
```

HTT

Nondeterminism (// and \bot)

```
Subseq:: Tree → Tree
Subseq(Cons(x,xs)) → Cons(x, Subseq(xs))

// Subseq(xs)
Subseq(Nil) → Nil
Subseq(Other) → ⊥
```

In this talk, evaluation strategy is unrestricted (= call-by-name). But call-by-value can also be dealt with.

HTT

- Notation: n-HTT
 - is the class of Tree \rightarrow Tree functions representable by HTTs of order \leq n.
 - {Subseq} is 0-HTT, {Mult, Iter, Add} ∈ 2-HTT

```
Subseq :: Tree → Tree

Mult :: Tree → Tree

Iter :: Tree → (Tree → Tree) → Tree → Tree

Add :: Tree → Tree
```

Order-n to Order-1

THEOREM [EV88] [EV86]

$$(n-HTT) \subseteq (1-HTT)^n$$

n-th order tree transducer is representable by a n-fold composition of 1st-order tree transducers.

[EV86] J. Engelfriet & H. Vogler, "Pushdown Machines for Macro Tree Transducers", *TCS 42* [EV88] —, "High Level Tree Transducers and Iterated Pushdown Tree Transducers", *Acta Inf. 26*

Proof: n-HTT = 1-HTT \circ (n-1)-HTT

Idea:

Represent 1st-order term Tree→Tree by a Tree.

$$f :: Tree \rightarrow Tree \rightarrow Tree$$

$$F(Z)(y) \rightarrow S(S(y))$$

$$F :: Tree \rightarrow Tree$$

$$F(Z) \rightarrow S(S(Y))$$

Represent 1st-order application symbolically, too.

$$\int_{-\infty}^{\infty} F(x)(Z) \qquad \int_{-\infty}^{\infty} \frac{\partial F(x)}{\partial x} \left(\frac{\partial F(x)}{\partial x} \right) \frac{\partial F(x)}{\partial x}$$

Proof: n-HTT = 1-HTT \circ (n-1)-HTT

Represent 1st-order things symbolically.

F:: Tree
$$\rightarrow$$
 Tree
F(Z) \rightarrow S(S(Y)) ... \rightarrow @(F(x), Z)

Then a 1-HTT performs the actual "application".

```
Eval(@(f, b))(y) → Eval(f, Eval(b)(y))
Eval(Y)(y) → y
Eval(S(x))(y) → S(Eval(x)(y))
Eval(Z)(y) → Z
```


Eval($(a(f, b))(y) \rightarrow Eval(f, Eval(b)(y))$

Why That Easy

- Relies on the ordered-by-order condition.
 - No variable renaming is required! [Blum&Ong 09]

Decomposed.

Next, Make Intermediate Trees Small.

1-HTT n

THEOREM [I. & Maneth 08] [I. 09] (+ improvement)

```
\forall \tau_1, ..., \tau_n \in 1-HTT, \exists \tau'_{del} \in 0-LHTT, \tau'_1, ..., \tau'_n \in 1-HTT, for any (\tau_n \circ ... \circ \tau_1)(s) \ni t, there exist \tau'_{del}(s) \ni s_0, \tau'_i(s_i) \ni s_{i+1}, |s_i| \leq |s_{i+1}|, s_n = t.
```


[IM08] K. Inaba & S. Maneth, "The complexity of tree transducer output languages", FSTTCS

[Inaba09] K. Inaba, "Complexity and Expressiveness of Models of XML Transformations", Dissertation

How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive"

How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive" by separating its "deleting" part

How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive" by separating its "deleting" part, and fuse the deleter to the left [En75,77][EnVo85][EnMa02]

Key Part

Separate the "deleting" transformation

$$\tau_{n} = \tau'_{del}; \tau'_{n}$$

$$\Rightarrow \triangle \Rightarrow \triangle \Rightarrow \triangle$$

Key Part

Slogan: Work on every node

(t'n must generate at least one node for each input node)

Work on Every Node ⇒ Visit All Nodes

Deleting HTTs

may not recurse down to a subtree.

Work on Every Node ⇒ Visit All Nodes


```
Del(S(x_1,x_2)) \rightarrow

S12(Del(x_1), Del(x_2)) // S1_(Del(x_1))

// S_2(Del(x_2)) // S__()
```

At least one choice of nodeterminism "deletes correctly".

$$F(S12(x_1,x_2)) \rightarrow G(x_1)(F(x_2))$$

$$F(S1_{(x_1)}) \rightarrow G(x_1)(\bot)$$

$$F(S_{(x_1)}) \rightarrow \bot$$

$$F(S_{(x_1)}) \rightarrow \bot$$

$$F(S_{(x_1)}) \rightarrow \bot$$

Work on Every Node ⇒ Work on Leaf

Erasing HTTs

may be idle at leaves.

Work on Every Node ⇒ Work on Leaf

Erasing HTTs

Work on Every Node ⇒ Work on Monadic Nodes

Work on Every Node ⇒ Work on Monadic Nodes

Skipping HTTs

Nondeterministic deletion again.

Remember how arguments would've been shuffled.

Simple Arithmetic

- Input size = #leaf + #monadic + #others
 - For each leaf on the input, generate ≥ 1 node.
 - For each monadic node, generate ≥ 1 node.
 - Thus, $\#leaf + \#monadic \leq Output size$.
- For any tree, #others < #leaf \leq Output size.
- Add: #leaf + #monadic + #others ≤ Output size*2
- So, Input size < Output Size * 2

Work on Nodes with Rank-2,3,...

Input size < Output Size * 2

```
Fr(Bin(x<sub>1</sub>,x<sub>2</sub>))(y) \rightarrow Fr(x<sub>1</sub>)(Fr(x<sub>2</sub>)(y))
Fr(A)(y) \rightarrow A(y)
Fr(B)(y) \rightarrow B(y)
```

This bound is sufficient for deriving the results, but we can improve this to Input size \leq Output Size, by deterministic deletion of leaves + inline expansion.

Done! Intermediate trees are small!

Next.
"Translation membership problem"

Translation Membership

Given trees s1, s2 and τ , can we determine " $\tau(s1) \Rightarrow s2$?" in NP / O(|s1|+|s2|) space?

From the construction, **t** is always

- 1st order HTT
- Non-deleting/erasing/skipping.
- Path-linear: recursive call to the same child node will not nest.
 - OK: Node(f(x), g(x)) BAD: f(x, g(x))
 - \rightarrow height(s2) \in O(|s1|)

Example

```
T = \begin{cases} S(x) \rightarrow F(x)(\Delta) \\ F(A(x1,x2))(y) \rightarrow F(x1)(\alpha(F(x2,y))) \\ F(B(x1,x2))(y) \rightarrow F(x2)(\beta(F(x2,y))) \\ F(C)(y) \rightarrow \Gamma(y) \end{cases}
```


Basic Idea:

Just compute $\tau(s1)$ and compare.

Key Points

- τ(s1) may be very big
 - \rightarrow Compute $\tau(s1)$ incrementally. If it becomes larger than s2, return false immediately.
- τ may be nondeterministic
 - → For NP algorithm, use the nondeterminism. "non-deleting" property ensures polynomial choices.
 - → For linear space algorithm, do back-track search. The "call-stack" is linear-size bounded (next page), so it can be done in linear space.

Each node corresponds to a "call-stack"

Summary

- Safe n-HTT → (1-HTT)ⁿ
- Split input-deletion
- Split erasing
- Split skipping
- Fuse deleter
- Translation membership

What about UNSAFE HTT?

- UNSAFE n-HTT → (1-stack-HTT)ⁿ
 - ???: Now variable names matter. Use De Bruijn index.
- Split input-deletion
 - OK: same technique works (nondet deletion)
- Split erasing
 - OK: same technique works (inline expansion)
- Split skipping
 - **????????????????????**
- Fuse deleter
 - OK: same technique works (product construction)
- Translation membership
 - OK: same technique works (call-stack size argument)

Stack-HTT

Parameters are now passed as a stack.

```
F :: Tree → Stack<Tree> → Tree
F(ADD(x))(..., y1, y2)
                                            POP!
     \rightarrow F(x)(..., PLUS(y1, y2))
F(SUB(x))(..., y1, y2)
     \rightarrow F(x)(..., MINUS(y1, y2))
F(ONE(x))(...) \rightarrow F(x)(..., 1)
F(EOP)(f)(..., y) \rightarrow y
```

Unsafe substitution Stack HTT

n-Unsafe-HTT Substitution

```
F(\sigma(x...))(y0)...(yn)(z) \rightarrow rhs
                                       where z :: tree
F(\sigma(x...))(y0)...(yn) \rightarrow [[rhs]]_0
                                          if e:: tree
• [[e]]_{k+1} = s([e]]_k)
• [[yi]]_0 = s(yi)
                                         if yi :: tree
• [[z]] = z
• [[x(...)]]_k = x([[...]]_{k+1}) if x(...) :: tree->tree
• [[e1(e2)]]_k = @([[e_1]]_{k+1}, [[e_2]]_k) if e_1 :: tree->tree
• [[e_1(e_2)]]_k = [[e_1]]_k ([[e_2]]_k) otherwise
                       ...something like this (the above presentation
```

may not be correct) should work, I hope!

Example

1:: tree

$$I \rightarrow S(A)$$

S:: tree -> tree

$$S(x) \rightarrow F(G(F(x))(B))(C)$$

F:: tree -> tree

$$F(x)(y) = D(x, y)$$

G:: (tree->tree) -> tree -> tree

$$G(u)(x) = u(x)$$

$$1 \rightarrow @(S, A)$$

$$S \rightarrow$$

$$F(x) \rightarrow D(x, z)$$

$$G(u) \rightarrow @(u, z)$$

Example

$$1 \rightarrow @(S, A)$$

$$F(x) \rightarrow D(x, z)$$

$$G(u) \rightarrow @(u, z)$$