Compact Representation for Answer Sets.adry Regular Queries

Kazuhiro Inab3 Haruo Hosoy2

aNational Institute of Informatics, 2-1-1, Hitotsubashi, Chiyoda-ku, Tokyo, Japan
bThe University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Abstract

An n-ary query over trees takes an input tteand returns a set of-tuples of the nodes df In this paper, a compact

data structure is introduced for representing the answer setsaof queries defined by tree automata. Despite that
the number of the elements of the answer set can be as lafg& asur representation allows storing the set using
only O(Jt|) space. Several basic operations on the sets are shown to be efficiently executable on the representation.

Key words: Tree Automata; Data Structure; XML

1. Introduction

The finite state automaton is a well-known model for representing properties for trees and strings. The class of
gueries definable by finite state automata is catbgailarand is widely used both in theory and in practice. A number
of query formalisms are shown to be equivalent or subsumed by regular queries. Examples of such formalisms include,
regular expression patteffi][monadic second-order logi@] x-calculus[B], Core XPathlfl], monadic Datalogd],
Boolean attribute gramm&@], etc.

In this paper, we are interested in the space complexity ofithey queries defined by tree automata. #ary
guery over trees takes an input treand returns a set of-tuples of the nodes af The number of elements in the
answer set of an-ary query may be as large #§* where|t| is the number of the nodes of Also, usually, storing
a set of|t|™ elements requires at least|™ space where is the space required to store a single element (in this case,
onen-tuple of nodes). Thé(|t|™) space consumption is unavoidable if the elements are chosen in a perfectly random
manner; it is a well-known consequence from information theory. Note, however, we are interested in more practical,
less random queries. Queries defined by tree automata have much more structure than random ones. By exploiting
the structural characteristics of regular queries, we can represent the answer setsdorapnessetorm.

Let us explain the idea by an example. Consider the regular query “select all pair of(aodgsuch thate is in
the left subtree of the root node andk in the right subtree of the root node” with the input ttees in Figuré€ll Then
the answer set consists of nine elemef{s;, v4), (v2,v4), (vs, v4), (V1,Vs5), (V2, V5), (v3,05), (v1,v6), (V2, V), (V3,
vg) }. Obviously, if an input tree hasnodes both in the left and the right subtrees, the size of the answer set wll be
which is quadratic in the numbeér. 4 1 of the nodes. Our approach for avoiding the quadratic blow-up is to represent
the answer set by a symbokxpressioninstead of computing the concrete list of elements. For this example, we
can represent the answer set by the expresgiornws, vs} x {v4, v5,v6} Wherex denotes the product of two sets.
Counting the number of variables and the operator, the length of the expressichiisstead 0. Analogously, for
the general case withhnodes in both the left and the right subtrees, the answer set can be represented by an expression
of length2n + 1, which consumes only linear space with respect to the size of the input tree.

The contribution of our work is in establishing the expression-based compact representation as illustrated above.
In fact, only two operatorss (disjoint unior) and = (a slight variant ofproduc)—are necessary for achieving the
linear-size representation of the answer sets of regular queries. We show that for amydiyedgular query and an
input treet, the answer set can always be represented by an expressioamd with every leaf expression being
a singleton set of an input node. By sharing common sub-expressions, such an expression can always be represented

Email addresseskinaba@nii.ac.jp (Kazuhiro Inaba)hahosoya@is.s.u-tokyo.ac.jp (Haruo Hosoya)
Preprint submitted to Theoretical Computer Science June 8, 2010

Figure 1:Sample Input Figure 2:Query Result in Expression-Based Representation

by a dag of size at most- 3"|0.4||t| where|d 4| is the size of the deterministic automaton representing the query.
That is, regardless of the arity of the query, the data complexity with respect to the $tzef the input is always
linear! As an instance, FiguEshows the expression-dag (just a tree in this case) representation of the query result of
the previous example. The factor complextyis sufficiently low for queries with smait such as binary or ternary
queries, which are the most common cases occur in practice; after all, it is quite rare to run, say, a 100-ary query.
Our dag-based representation is narBRED (Set Representation by Expression Dagkich enjoys good time
complexity as well as size-efficiency. The SRED representation of the answer set can always be computed from
the input treet in time O(3™]6.4]t]), regardless how large the actual answer set is. Also, evaluation (or we could
say, decompressignof a SRED to yield the concrete list of answer tuples can be done in @mé|a|), where
la| is the number of the answers. By combining these two steps, we obtain an algorithm for regular queries in
the optimal data complexity)(|t| + |a|). More than that, on SRED, we can carry out the following important
operationsvithout decompressiniy (1) SELECTION: for an answer set, the SRED representation of the sgt, =

{(v1, s Vim1, V41, -y Un) | (V1,0 Vim1, U, V41, ..., Un) € s} can be computed in tim@(3™h|d4|) whereh
is the height of the input tree for binary trees and is the height timeg| for unranked trees, (2) FDJECTION
the setsq, = {v; | (v1,...,v,) € s} can be computed in tim@(3"h|d4||sq;|). Besides the expression-based

representation, another key idea of SRED is to remember for every sub-expression the least common ancestor of the
nodes contained in the set represented by the sub-expression. The information allows locating the leaf expressions
containing each input node in time proportional only to the height of the expression-dag.

Related Work. SRED has much similarity to the Complete Answer Aggregate (CAA) introduced by Meuss, Schulz,
and Bry [7] as a compact representation of answer sets of queries. The size of a CXA|i$) which is competitive
to ourO(Jt]). CAA is also suitable for applying several operations such as membership testing. The main advantage
of our work is that it supports arbitrary regular queries, which is strictly more expressive than the query language used
in [7]. Though an attempt to represent the answer sets of regular queries with CAA is given by Filiot andBJison [
through a decomposition of queries, the space complexiy(j§?¢) for some constani,, depending on the query,
which grows ton in the worst case. Furthermore, precise complexity of operations such as selection or projection for
CAA was not estimated.

An algorithm (FFG algorithm) for answering regulaary queries in the optimal time complexi€(|¢| + |a|) is
shown by Flum, Frick, and GrohB][Since no compact data structure was used in their work, the FFG algorithm
requiresO(|a|) space to be carried out. In fact, our algorithm can be regarded as a space-efficient variant of the FFG
algorithm. The expression dag generated in our algorithm precisely corresponds to the set operations executed in the
FFG algorithm. On the other hand, the class of queries that the FFG algorithm can be applied to is more general than
our algorithm. The FFG algorithm can also be used for queryitgples ofsets olhodes ofgraphsthat have a tree
decomposition, while our algorithm only supports queriesrfdauples of nodes of trees. It will be future work to
determine whether our compact representation of the answer sets can be extended to more general classes of query.

Another related area of research is becoming hot recently, nalinelgr-delay enumerationf MSO query results
[10,[1]]. In their algorithms, the input tree of a query is first converted to an intermediate data structure that allows
linear-delay enumeration of the query results. Since the intermediate data structure is of linear size with respect to the
input tree, it can also be used as a compact representation of the answer set. Compared to our SRED representation,
however, their data structures are concentrated only for linear-delay enumeration and other operations such as selection
or projection are not supported.

2

Outline. The paper is organized as follows. In Seci{&mwe introduce basic notations on trees and tree languages.
Sectiorld presents a simple but inefficient algorithm for executingry queries on binary trees, as the basis of our
main algorithm. Then, in Sectidfi we give our main results. We introduce the SRED data structure as a compact
representation of set of tuples, and show that just by using SRED, the previgagtgorithm can be turned into one
that efficiently produces a compact answer-set representation. SBtliows an application to XML processing.
Sectiorfd concludes.

2. Preliminaries

In this paper, we mainly considbinary treesin which every node has either zero or two children. Generalization
to the trees with other arity is briefly mentioned in the end of Se@iobet X be a finite alphabet that is a disjoint
union of two alphabet&(®) andx(?). A binary tree(or simply, atre€) overX is a tuplet = (V;, labely, It;, rt;, root;)
whereV; is the disjoint unionV,”) u V,'?) of finite sets omodes label; : V¥ — © u 1,2 — £ s thelabel
function, it;, rt; : Vt(z) — V; is theleft- andright- child function respectively, andvot; € V; is theroot node. We
call the nodes ith(O) leaf nodesand the nodes im(Q) branching nodesWe require a tree to satisfy the following
conditions: (1) rooted: there is no nodes V; such thatlt;(v) = root, or rt,(v) = root,, (2) acyclic: there is no
nodev € V; that is reachable from itself by finite applicationsiof andrt;, and (3) tree-formed: for any non-root
nodev € V; \ {root;}, there exists a unique nodecalled theparentof v such thatlt;(u) = v V rt:(u) = v. A
structure only satisfying (1) and (2) is calledlag Foruv,,ve € V4, the binary order relation; <; v is defined to
hold if and only ifv, is reachable fromy; by zero or finitely many applications &f; andrt¢,. We usually omit the
subscript, if clear from the context. Byt| we denote the numbéV;| of the nodes. We use the notatiafv;, v9) to
denote a node such thatabel,(v) = a, lt;(v) = v1, andri,(v) = ve.

For a treet, we assume that each nodec V; can be stored on memory in constant space independent/ffom
In practice, this implies the assumption that the tréits in the address space of the computer and each node can be
represented by a single pointer. We also assume that the operatiehdt, r¢t, and< can be executed in constant
time. In particular, we can test the relatighin constant time by, e.g., the preorder/postorder numbelfiglg Again
by the assumption that| fits in the address space, preorder and postorder numbers can be stored in constant space.

A tree languageover X is a set of trees over. By Ty, we denote the set of all trees over An important
class of tree languages is defined in terms of tree automathottom-up deterministic) tree automatowerX. is a
tuple A = (Q4,0.4, F4) whereQ 4 is the set of stateg,4 : (2 U (2@ x Q4 x Q4)) — Q.4 is the transition
function, andF'4, C @4 is the set of accepting states. The subscjipg omitted if clear from the context. Aun
of a tree automatot on the input tre¢ is the unique functiop : V; — Q4 such thatp(v) = d4(label,(v)) if
labely(v) € £ andp(v) = 0.4 (labely(v), p(it;(v)), p(rti(v))) if label;(v) € £(2). The automatomccepts if and
only if p(root;) € F4. By L(A), we denote the set of trees acceptedbyA tree language is said to begularif it
is equal toL(.A) for some tree automatoA.

3. N-ary Regular Tree Queries

As a basis of our algorithm for computing the compact representation of answer sets, we first explain a basic
bottom-up algorithm for regular queries with(|t|"*1) time complexity, which has already been known in the lit-
erature. Our new algorithm is obtained by changing the data structure used in the algorithm, as explained later in
Sectioridl

An n-ary queryfor trees ovet is a functiom) that maps each treec Ty, to a set ofn-tuples of its nodes. Let
B = {0,1}, 2 = 2O x B, £ = @ x B", andx, = 2 uS?. Foratree languagd C %, ann-ary
query defined by is the functiory; (¢t) = {(v1,...,vy) | mark(t,v1,...,v,) € L} wheremark(t,vy,...,v,)is @
treem = (V4, label,y,, lty, rty, Tooty) with label,, (v) = (labeli(v), by - - - by,) whereb; = 1 if v = v; and0 otherwise.
Intuitively, a query defined by a languadeselects a tuplév,, ..., v,) if and only if L contains a tree obtained by
marking each selected nodewith 12. A query defined by a regular languafjés called aregular query In the rest

11n general,L may contain “ill-marked” trees that have two or more nodes markeg as1 for the same and hence can never be in the range
of mark. Such trees, however, are simply ignored and have no effect on the definitign of

3

of the paper, we assume the regular language be given as a tree automatdsuch thatL = £(.A). Nevertheless,
our algorithm can be applied, without changing the data complexity, to many other query formalisms as long as they
define regular languages by first compiling them into tree automata and then running the algorithm.

The most néve algorithm for a regulan-ary query is, to try all possible markings. Given an automadoover
¥, and a tree, for all (vy,...,v,) € V;* we generate the marked treeurk (¢, v1, ..., v,) and test whether it is
accepted byA. Ifitis, (v1,...,v,) is an answer and hence we output it. This algorithm takég|"*!) time,
because computing each run.ftakesO(|t|) time and we try¢|™ runs in total.

Another approach is to try all marking parallelly by a single bottom-up run. The following recursive procedure
QUERY-RUN, takes a node of t and computes a table containing the result of the parallel marking run.

QUERY-RUNq4(v)
1: r < new 2-dimensional array of siz€ 4| x 2™ with each element initialized tb
2 if label(v) € £(©) then

3: for each ((label(v), by) — qo) € 6.4 do
4 r[qo, bo] < singleton(v, bo)
5. else iflabel(v) € X3 then
6: 71— QUERY-RUN4(It(v))
7. 1y — QUERY-RUN4(7t(v))
8: for each ((label(v),bo),q1,q2 — qo) € d.4 dO
9: for each disjoint by, b1,b2iN00...00t0 11...11do
10: r[qo, bo|b1|b2] < 7[qo, bo|b1|b2] W singleton(v,by) * ri[q1, b1] * r2[ge, ba]
11 return r
By singleton(v, 81 - - - B,) we denote the singleton sétuy,...,u,)} whereu, = v if §; = 1 andu; = L if

G; = 0. Here, L is a special symbol not contained 3. In line 9, for each disjoint iterates over pairs of the
form (b1 = B11-+ Bin,b2 = Bo1-+ Pan) € (B™)? such that for alll < i < n, at most one of Bo;, 14, B2i }
is 1, with o1 -+ - Bonn = bp. Note thatby is determined by the outeiy loop and fixed during each single inner
loop. The operatof is for bitwise-or andJ is disjoint union of sets (the operands are indeed disjoint, as explained
later). The operator is a kind of “product” operation that combines two sets of tuples, defined as follews =
{(’U,l,-'- ,un) | (81, s ,Sn) €S, (tl,. .. ,tn) e T, Vi : (uz =5 N1L= ti> \Y (L =8, \Nu; = tz)} For example,
{(v1, L, 1), (va, L, L)} # {(L, L,v3), (L, L,vq)} is equal tof (vy, L,v3), (v1, L, v4), (v2, L, v3), (va, L,vg)}. Let
us remark that we never takeproduct of sets that have tuples with nannodes on the same position, as will be
shown in Lemm&l

Let us explain how the algorithm works. Let= QUERY-RUN,(v) for a nodev € V;. For eachy € Q4 and
b=p01---Bn € B, r[g,b]is asetofn-tuples over the séf, U{L}. Atuplein(V;U{L})" is called gpartial answer
to the query. For exampléy,, 1) is a partial answer that selects the nedeas the first coordinate and leaves the
second coordinate to be selected later. Intuitively, b] is the set of partial answerssuch that, if a tree is marked
according tay, then at the node, the run of the automatad reaches the state For example, ifvy, L) € r[g, b],
it means that “if the node; is marked as the first component of the answer and no node in the subtreevuader
marked as the second componedtreaches the statg at nodev”. As an example, let us assumeto be a leaf
node labeledr € ©(*) and.A to define a binary query. Suppoég has the following four ruless 4((o, 00)) = q1,
d4((0,01)) = q2,0.4((0,10)) = ¢1, andd 4((o,11)) = g2. Then, the table = QUERY-RUN, (v) is:

T[leoo] = {(J-?J-)} ’I’[thl] = (Z) T[Q17 10] = {(U7 J—)} T[Q17 11] = @
rlg2,00] =0 rlg2,01] = {(L,v)} rlg2,10] =0 rlg2, 11] = {(v,v)}.

The setr[¢;,00] containg L, 1) because if we do not select any node belgthe automaton reaches the stateOn
the other hand, the sefg-, 00] is empty, because we cannot reach the state nodev if we do not select any node.
Similarly, r[¢1,01] is empty, because we cannot reach the staiéwe select the second coordinate of the answer.
On the other hand, we havégs, 01] = {(L,v)}, because if we chooseas the second coordinate, the automaton
reaches the statg.

The indexb of r calledflag denotes the already selected coordinatesi-thecoordinate of the elements offz, b]
is non-L if and only if thei-th bit of b is 1. Thus we have the following lemma.

4

Lemma 1. Letr = QUERY-RUN,(v) for somev and (uy,...,u,) € r[q, 51 ---Bs]. Forall 1 < i < n, we have
(ui eV; andv <; ui) if ﬁi =1, andui =1if ﬁi =0.

Proof. The proof is by induction on the structure of the tree rooted &t v is a leaf nodey|q, b] is either empty (the
case((label(v),b) — q) ¢ 0.4) or a singleton setingleton(v, b). The lemma obviously holds for the empty case, and
the latter case is also immediate from the definitioriafjleton (v, b).

If v is a branching node, by the construction of thergetb], the condition(us, ..., u,) € r[g, b] implies that
we have(us, ..., u,) € singleton(v,by) * r1[q1, b1] * r1[ge, b2] for someqy, g2 € Q.4 and disjointbg, by, by € B™
with bg|b1]b2 = b. Now, assume that theth bit (5;) of b is 0, which at the same time means that th bits of
bo, b1, andb, is 0. By the definition ofsingleton and the induction hypothesis, tlxh coordinate of each element
of singleton(v,bo), r1[q1, b1], andra[q1, b2] is L. Hence, from the definition of, u; also has to be_ in this case.
Contrarily assumeg; = 1, which means that exactly one of th¢h bits of by, b1, andb, is 1. Then, if we take any
three tuplegss, ..., s,) € singleton(v,by), (t1,...,tn) € r1[q1,b1], and(wy, ..., w,) € r2[g2, ba], €xactly one of
s;, t;, andw; is non-L due to the induction hypothesis. Let us calthe non-L node. We have <; x, because
s; = v, and by induction hypothesis(v) <; t; andrt(v) <; w; if they are notL. The definition of« tells us thatu;
is one of such-chosen which is non-, andv <; x as desired. O

The lemma ensures two disjointness properties in the procedure QUERY;RBiXst, thex-product is always
taken between the sets with disjoint selected-coordinates. That is, we need to cégltenly for the setsS, T’
suchthaf...,v;,...) € Sand(...,u;,...) € T implies either; or u; is L. This holds because in line 18 ¢ccurs
only here) of the QUERY-RUN algorithm, the flag$,, b1, andb, are disjoint. Note that, for such a case, we have
|S«T| = |S|-|T|. Secondlisindeed taken between disjoint sets. This is because the operandshbse only
one occurrence is in line 10) are constructedkkgroduct either over different flags or over different states, i.e., the
union is of the formsingleton(v, by) * r1[q1, b1] * 12[q2, ba] W singleton(v, b)) * r1[q}, b}] * r2[gh, bs] where either
(bo, b1, b2) # (bf, by, b5) or (q1,492) # (4%, ¢5). Disjointness in the former case follows from Lemfeand in the
latter case it follows from the determinism of the automatbn

The answer set of the query can be calculated from the result of QUERY;RupNlied to the root node, namely,
r = QUERY-RUN, (root;). For eachy € F4, recall that the set[q, 1- - - 1] is the set of tuples such that “if the tree
is marked according to the tupld, reaches the statgat the root node”, which is by definition the answer set.

Theorem 2. ¢ 4(t) = U QUERY-RUNY (rooty)[g, 11 - - - 11].

qEF 4

Proof. Let vy, ..., v, € V; be fixed and be the unique run on the treeark (¢, v1,...,v,) by A. Letv € V;. Let
partial(v) = (u1,...,u,) With u; = v; if v <; v; and otherwise,; = L. Let flags(v) = By -+ - By, With 8; = 1 if
v <y v; and otherwises; = 0. We can prove for all in V; the following claim:

forall ¢ € Q .4, partial(v) € QUERY-RUN,(v)[q, flags(v)] if and only if ¢ = p(v).

We have(vy, ..., v,) € QUERY-RUN, (root,)[g, 11 - - 11] if and only if ¢ = p(root,), by applying the claim to the
root nodev = root;. It, together with the definition 011[;(,4), proves the desired result.

Proof of the claim is done by induction on the structure of the tree rooted afonsider the case whan
is a leaf. From the leaf-node case of the QUERY-RUNrocedure, we have QUERY-RUNv)|gq, flags(v)] =
singleton (v, flags(v)) = {partial(v)} when ((label(v), flags(v)) — q) is in § 4, and otherwise it is empty. This
already shows the claim for the leaf case, because the discriminating condition is equivalenpte).

Consider the case whenis a branch node. Let; = QUERY-RUN,(/t(v)) andr, be that ofrt(v). We first
show the “if” direction; assume = p(v). Letqr = p(lt(v)), g2 = p(rt(v)), b = P1--- B, Whereg; = 1
iff v = v;, by = flags(lt(v)), andbs = flags(rt(v)). Note thatflags(v) = bo|b1]b2, and by the assumption
q = p(v), it must be the case = § 4((label(v), by), q1, g2); the line 10 of the procedure QUERY-RUNs executed
in this variable binding. That is, the set QUERY-RUIN)[q, flags(v)] is a superset ofingleton (v, by) * r1[q1, b1] *
r9[qa, b2]. By the induction hypothesis, the latter set contains the unique element of the psodieton (v, by) *
{partial(lt(v))} * {partial(rt(v))}, which ispartial(v) as desired. For the “only if” direction, assume-tial(v) €
QUERY-RUN, (v)[g, flags(v)]. From the construction of this set in QUERY-RUNit implies that for some dis-
joint bglby b2 = flags(v) and gy, qa € Q4 with §4((label(v),bo),q1,92) = g, it must be the casgartial(v) €
singleton(v,by) * T1[q1,b1] * r2[ge, be]. But by Lemmddl it can only happen whehy, = flags(lt(v)), be =

5

flags(rt(v)), partial(lt(v)) € riq1,b1], andpartial(rt(v)) € ralge, be]; other entries of; andr, cannot gener-
ate partial(v) by x-product. Now, from the induction hypothesis we obtain= p(it(v)) andgs = p(rt(v)), and
thereforep(v) = q. O

What is the time complexity of this algorithm? For each noede V;, the procedure QUERY-RUN s applied
exactly once. In other words, the procedure is calledimes. In the body of the procedure, the case X6¢)
labels is computationally harder; the outer loop requifgs iterations, the inner loop fdr, b2 requires at most™
iterations (for each of. bits we have3 choices—the bit belongs to eithir, b5, or none of the two), and inside the
loop, onel operation and twe operations are required. Note that the result of those set operations can be as large as
O(Jt|™) in the worst case. As long as we represent such sets as a concrete collection of tuples, the epeeation
to enumerate all its output elements. Hence it takes at{@gsft*) time. Altogether, the total time complexity is still
high: O(3™[3 4] [¢t|™*1).

One approach for reducing the complexity is to do some preprocessing before running the algorithm, as proposed
by Flum, Frick, and Grohe9]. Their algorithm consists of 3-passes over the input tree; the first two passes detect,
for each node, whether or not each entfy, b] really needs to be computed. The last pass is essentially the same as
QUERY-RUNY, but skipping the computation for “unneeded” entnigg b]. This optimization leads to the complex-
ity O(3™]0.4|([t| + |a|)) where|a| is the size of the answer set. The complexity of this strategy with respect to the data
size seems optimal in some sense; if the size of the ingutand the size of the output jg|, even just reading and
writing those data already také¥|t| + |a|) time, doesn't it?

Yes, it is optimal—as long as you write down all the elements of the answer set as the output. In the next section,
to avoid the issue, we propose here to usempressed representatiofithe answer set, whose size can be bounded
by O(Jt]).

4. SRED: Set Representation by Expression Dags

In this section, we propose a novel data structure named SRED for representing the answet-seysrefjular
queries. The size of SRED is always bounded by the input@{z#), regardless how large the actual set it represents
is. Just by using the data structure instead of normal sets in the QUERY;RlWd¢edure, we obtain linear running
time with respect td¢|, as well as a compact representation of the answer set. We first give the formal definition
of SRED, then show how easily and efficiently it can be adapted to the QUERY,Ru@brithm, and finally, show
several important set-operations can be directly applied to SRED.

4.1. Definition

The idea of our compact representation is quite simple. To represent,av@etise a syntax treeof an expression
that evaluates te. For example, let; andr, be the root nodes of the syntax-tree representations ot setisd so
(we writes; = [r1] andse = [rs], respectively). Then we denote the setJ s, by the treer = cup(ry,72). To
denote the seftr1] W ([r2] * [r3]), we usecup(ry, star(re, r3)). Note that, by allowing sharing of subtrees (i.e., using
syntaxdags instead of syntax-trees, which allows a node &ikg(r,, 1)), each operation can be executed in constant
time, because it is just a creation of one new node. Since the algorithm QUERY;RHiXies out set operations at
mostO(3™|d.4][t|) times, under this representation of sets, the running time of QUERY-RISM O(3™|d 4/|¢|), and
so is the size of the output dag representing the answer set.

Let us formally explain the syntax-dag-based representation, which wS&R&D (Set Representation by Ex-
pression Dags) An answer set of am-ary query over a tre¢ is represented by a dag of the following BNF, for

NSTg,...3, =-cup(v, NSTgs,..3,, NSTpg,...3,) Withv € V;
| star(v, NST o, ...a,,, NST,...,,) Withv € V; anda,; & v; = ;
| sing{v, By -+« Bn) With v € V;

6

EVAL (r) EVAL-NE ()

1: if r = emp() then 1. if r = cup(v,r1,72) then
2: return () 2: return EVAL-NE(r1) U EVAL-NE (r2)
3. else ifr = unit() then 3: else ifr = star(v,r1,72) then
4 return {(L,---, 1)} 4 return EVAL-NE(r1) * EVAL-NE(r32)
5: else ifr = ne(r’) then 5: else ifr = sing(v, b) then
6: return EVAL-NE (1) 6: return singleton(v,b)
UNION-AT (v,71,72) PRODUCT-AT (v, 71, 72)
1: if 1 = emp() then 1: if 1 = emp() or ro = emp() then
2: return ro 2: return emp()
3: else ifry = emp() then 3: elseifr; = unit() then
4: return 4: return ro
5. elseifry = ne(r]) and ry = ne(r}) then 5: else ifry = unit() then
6: return ne(cup(v, 7}, 75)) 6: return
) 7: elseifr; = ne(r]) and ro = ne(r}) then
SINGLETON-AT (v, .- -) 8 return ne(star{v,r},r5))

1. ifB---6,=0---0then
2 return unit()

3: else

4 return ne(sing{v, 51 -+ Bn))

Figure 3:Basic Operations on SRED

wherea ¢ = bifandonlyifa # candb = 1 ora = b = ¢ = 0. Note that, for enabling fast navigation
as will be explained later, we record the nodec V; at each operator. Also for efficiency, we specially treat the
empty set (represented leynp()) and theunit set({(L,..., 1)}, represented bynit(})), so that they do not occur
at operand positions. For exampteyp (v, emp(),emp()) is ill-formed becausemp() occurs as operands ofip.
We call a node labeledmp, unit, or ne a set-node and a node labelecup, star, or sing a neset-nodgne stands
for non-empty). For a neset-nodec NSTg,..3,, we denote bydim(r) the number ofis in 3; --- 3,. Note
that we havelim(sing{(v, 51 - - - 8n)) > 1, dim(cup(v,r1,r2)) = dim(r1) = dim(rs), anddim(star(v,ry,r2)) =
dim(r1) + dim(rz).

By avoidingemp() andunit() to occur at non-root position, we can evaluate the syntax-dag by a straightforward
recursion shown in Figuf@, in a time complexity proportional to the size of the answer set.

Lemma 3. Assume the disjoint union Ws, can be computed in constant time and the prodyes, can be computed
intimeO(n|sy * s9]) for s1, s, # 0. Then for a neset-node EVAL-NE (r) runs in timeO ((k + 1)n|EVAL-NE(r)))
wherek = dim(r) — 1.

Proof. Without loss of generality, we assume the disjoint unignJ s, to take one unit computation step, product
s1 * 8o to taken|s; * so| steps, andingleton (v, b) to taken steps. Under the assumption, we prove by induction that
the computation of EVAL-NE) takes at mosT'(k, r) = 2((2k + 1)n|EVAL-NE(r)|) — 1 steps.

If r is a node labelesing, we havek > 0 and thusl'(k,r) > 2n — 1 > n.

If » = cup(v,r1,7r2), by induction hypothesis;; = EVAL-NE(r;) andsy, = EVAL-NE(ry) can be computed in
timeT'(k,r1) + T'(k,r2) = 2((2k + 1)n|EVAL-NE(r)|) — 2 steps (note thgEVAL-NE(r)| = |EVAL-NE(r1)| +
|EVAL-NE (r3)|, because it is disjoint union). Adding one unit computation step forithee obtained computation
steps is equal t@&'(k,) as desired.

If » = star(v,r1,72), by induction hypothesiss; = EVAL-NE(r1) andss = EVAL-NE(r3) can be computed
in T'(ky,7m1) + T'(ko,72) steps for somé; + k2 + 1 = k. Note that neithes; nor so is empty, because return
values of EVAL-NE are built up only fromingleton, x, andl. Thus, their size$s; |, |s2| are less than or equal to

EVAL-NE-1BY1 (r, callback)

1. if r = cup(v,r1,72) then

2 EVAL-NE-1BY1(ry, callback)

3: EVAL-NE-1BY1(r, callback)

4. else ifr = star(v, r1, r2) then

5. EVAL-NE-1BY1(r1, \p.EVAL-NE-1BY1(rs, Aq.callback(p * q)))
6: else ifr = sing(v, b) then

7 callback(singleton (v, b))

Figure 4:0ne-by-one generation of the element tuples of a SRED

|s1] - |s2] = |s1 * s2| = |EVAL-NE(r)|. The total number of steps can be estimated as follows:

T(k1,r1) + T(ka,r2) + nlsy * s2| = 2((2k1 + 1)n|s1|) — 1 4 2((2k2 + 1)n|sa]) — 1 + nlsy * sa|
< 2((2k1 + 2ka + 2)n|sy * s2]) — 2 + n|sy * s9|
= 2(2knlsy x s3]) — 2 + n|sy * s3]
<2((2k + 1)n|EVAL-NE(r)|) -1 = T(k,71). O

Theorem 4(EVALUATION). Under the same complexity assumption:oand* as in Lemmd, for a set-node, the
setEVAL (r) can be computed in tim@(n?|EVAL (1))).

Proof. Immediately follows from Lemm@, because by definition afim, the numbek is at mostr — 1. O

The complexity assumption is satisfied by, for instance, representing the concrete sets by a doubly-linked list of
tuples. Disjoint union can be implemented by the list concatenation, andgheduct is implemented by a double-
loop over two operand sets. Purely functional catenable [iS]}sight be an option, in particular when it is desirable
to avoid destructive updates. Another interesting implementation is shown in Eigunstead of constructing the
whole set of tuples, it generates each element topéeby-oneit takes a procedurenllback and calls it back for each
element tuple. It also has the same time complexity as the normal EVAL-NE.

The reader may notice that the evaluation EVALvisits every node below at least once. Hence, from Theo-
remi, we can conclude that the number of nodes betda/O(n?|EVAL (r)|). In fact, we are able to give a tighter
upper-bound.

Theorem 5(OuT-SizE-BOUND). For a set-node, the number of nodes of a dag rooted-as at mosen|EVAL (r)|.

Proof. Proof is by induction on structure of a neset-nedshowing that the procedure EVAL-NE is called at most
S(k,r) = 2(k + 1)|s| — 1 times during the computation af = EVAL-NE(r), wherek = dim(r) — 1. If this is
proved, the desired bourdh| EVAL ()| immediately follows from the fadt < n — 1.

If » is a node labeleding, the number of procedure calls is which is bounded by (k,r) > S(0,7) = 1. If
r = cup(v, r1,72), the number of procedure callsi$k, v)+S(k, r2)+1 = 2(k+1)|EVAL-NE (r)|—2+1 = S(k, r).
If » = star{v,r1,72), the number of procedure calls$§k,,r1) + S(k2,r2) + 1 for somek; + ks + 1 = k. Using
the fact thatEVAL-NE (r1)| and|EVAL-NE(r5)| is no more thadEVAL-NE ()|, this is bounded by (&, r). O

Note that this is the worst case estimation. In many cases, particularly |ENé&h ()| is large compared to the
original input tree of the query, the number of nodes is much smaller than the bound as will be shown in the next
subsection. What we can tell from TheorElis that,even in the worst cas&e are not losing much. Since it is a set
of n-tuples, Representation of the same set in an uncompressed form at least rel\ds(r)| space, which only
differs by a constant-factor from ours.

4.2. N-ary Query Algorithm Using SRED

The basic three operations used in the algorithm QUERY-RUEKe defined on SRED as in FiguBe Note that,
to avoidemp() andunit() to occuring in operand positions, we deal with the nodes specially. For example, since
U s = s for any sets, when either one of the operands of the UNION-AT operation israp() node, it returns
the other operand rather than constructing a negrnode. The correctness of those short-cuts are based on easy
set-theoretic equations, and summarized in the following two lemmas.

Lemma 6. The following four properties hold.

1. EVAL(emp()) =0,

2. EVAL(SINGLETON-AT(v, b)) = singleton(v, b),

3. EVAL(UNION-AT (v, 1, 75)) = EVAL (r;) U EVAL (r2), and
4. EVAL(PRODUCT-AT(v, 71, 72)) = EVAL (1) * EVAL (1)

Proof. The property 1 and 2 hold by the definition of EVAL. The property 3 follows fifbms = s U) = s. Note
that in the implementation of UNION-AT we have not explicitly considered the case whernr; is unit(), because
it is covered by themp() cases; disjointness implies thatit() can be added only temp(). The property 4 is from
the equation§ x s = s« =Pand{(L,...,)} *s=sx*{(L,..., 1)} =s. O

Lemma 7. Let S-QUERY-RUN, be a procedure obtained by replacing (&)in the procedureQUERY-RUN,
with emp(), (2) = U y with UNION-AT (v, z,y), (3) = * y with PRODUCT-AT(v, z,y), and (4) singleton(v,b)
with SINGLETON-AT(v, b). Then,EVAL (S-QUERY-RUN,(t)[g,b]) = QUERY-RUN(#)[q, b] for anyt € Tk,
q € Q4,andb € B™.

Proof. Clear from Lemmdg, by induction on the structure of O

Now, we have the following two main theorems of this paper: the answer set ofaay regular query can
efficiently be computed as a SRED in linear time with respect to the size of the input, and it is also compact; its size
is linear, no matter how large the actual answer set is.

Theorem 8(QUERYING). For anyn-ary regular querWL(A) and a treet, we can compute a SREOhat represents
the answer set (i.,eEVAL (r) = ¥ 4(t)) in time O(3"[0.4]t]).

Proof. Letr’ = S-QUERY-RUN,(¢). We can compute the desired SREDy combining all-'[¢,1- - - 1]'s with ¢ €

F 4 by UNION-AT. From Theorem& and[Z, this satisfies the equation EVAL) = 1, (4)(t) (here, representing the

U operation in Theoreid by UNION-AT is justified because it is indeed a disjoint union, due to the premisettisat
deterministic). The complexity analysis goes similar to the case of QUERY-RUNKe procedure S-QUERY-RUN

is applied once for each nodeiirfthat is, the procedure is invoked at m@stimes), and at each node, the innermost
loop body (line 10) is executed at ma¥t|j 4| times. Different from the case of QUERY-RUN this time, set
operations UNION-AT and PRODUCT-AT in the loop body run in constant time. Hence, the total time complexity of
S-QUERY-RUNy is O(3™]6.4][t|). The last union-phase requires at mdsf| — 1 execution of UNION-AT, whose

time consumption can asymptotically be ignored. O

Theorem 9(IN-Size-BouND). The number of nodes of the SRE TheorenfBis at mostd - 3" |§ 4| |t| + | Fla| — 1.
Proof. Clear from the proof of Theoref@(note that in each loop body, up to 4 nodes are created). O

Before developing further algorithms on SRED, it is worth remarking here that Thé@oembined with Theo-
remid can be used to derive the “optimal” data complexity for regular queries.

Corollary 10 (It follows also from Corollary 4.5 of9]). The time complexity of-ary regular query with respect to
the data size i®(]t| + |a|), where|t| is the size of the input node, afd is the size of the output answer set.

PROJ(i,) PROJ-NE(i, r)

1: if r = emp() then 1. if r = cup(v,ry,72) then
2: return () 2: return PROJ-NEi,r1) U PROJ-NEi, rq)
3. else ifr = ne(r’) then 3: elseifr = star(v,rq1,7r2) (With r; € NSTs,...5,) then
4: return PROJ-NEi, ') 4 if 5; = 1then return PROJ-NEi,) else return PROJ-NEi, o)
5. else ifr = sing(v, 81 - - - §,,) then
6: return {v}
SEL (i, u,r) SEL-NE (4, u,7)
1: if r = emp() then 1. if r = cup(v,ry,7m2) and v < u then
2: return emp() 2 return UNION-AT (v, SEL-NE(%, u, 1), SEL-NE(7, u,73))
3: else ifr = ne(r’) then 3: else ifr = star(v, r1,re) (With r1 € NSTs,...5,) and v < u then
4 return SEL-NE(i, u,r’) 4: if 3; = 1 then return PRODUCT-AT(v, SEL-NE(i, u, r1),72)
5: else return PRODUCT-AT(wv, 11, SEL-NE(¢, u, r2))
6: elseifr = sing(v, ;1 --- 5,) and v = u then
7 return SINGLETON-AT(v, 81 -+ Bi—1Bi41 - Bn)
8: else returnemp()

Figure 5:Projection and selection on SRED

This way of using SRED just as an intermediate structure can be regarded as a different presentation of essentially
the same algorithm as that @][As mentioned before, ir9], the complexity was achieved by running two pre-
processing phases that determine whether each gfgtry] (in their notation,Sat, ,) at each node contributes to the

final query answer, and skipping the computation of the unneeded part. Two cases are considered to be unneeded: the
case that we can never reach stateg jnat the root node starting from the stateand the case that the 3¢, b] is

taken a product with the empty set afterward in the computation. In our algorithm, the former case is dealt with by
splitting the construction of a SRED structure and the evaluation of it; the construction has low complexity, and the
evaluation is only done on the states that reBglstates. The latter case is detected by the special treatmenpof

node in the PRODUCT-AT procedure; a SRED that is taken product withrait) set is discarded and thus is never
evaluated. Despite the similarity, we believe that our presentation is much simpler and easier to understand. In our
algorithm, structure of the first inge algorithm QUERY-RUN is kept unchanged, and only just a few set-operations

are replaced with (almost trivially correct) SRED-based operations in HBjure

4.3. Direct Manipulation of SRED

SRED is not only useful as an intermediate data structure for generating the concrete result of answer tuples. In
fact, it allows manipulation of the represented set directly on SRED, without evaluation. Here, we give an imple-
mentation of two important operations on SRED, nameRQJECTIONandSELECTION For a sets of n-tuples and
1 < i < m, PROJECTIONsg,; = {v; | (v1,...,v,) € s} is the set ofi-th coordinates ok. Given an element u,
SELECTIONs|;) = {(v1, -+ 0im1,Vig1y ooy n) | (V1,00 021, U, V41, - . ., U,) } IS the set of tuples in such that
the i-th coordinate isu. As an example of a use-case of the two operations, consider the following scenario: first
we applyPROJECTIONg; t0 an answer set, sort the result in some preferable order, and with each eleaig¢he
projected set, applgELECTION;.,,] t0 get the remaining coordinates. In this way, we can enumerate the answers of
queries in a user-specified order on the first coordinate, rather than in the default cesler OATION procedure.

On SRED representation of the answer sets, those two operations can be carried out in time proportional to the
heightof the input tree. That is, we do not need to traverse the whole structure of SRED, nor to re-traverse the original
input tree. Figurd is the implementation, which is straightforwardly obtained from the distributivity of projection
and selection over disjoint union, etc.

Theorem 11(PROJECTION. By using memoization, the procedi®®0OJs, r) computes the s&VAL (r)a; in time
O(min(m, 3"h|d4||EVAL (r)a;|)) whereh is the height of the original input tree andm is the number of nodes of
T.

10

SIZE (1) SIZE-NE(r)

1: if r = emp() then 1. if r = cup(v,ry,72) then
2: return 0 2: return SIZE-NE(r1) + SIZE-NE(r3)
3. else ifr = ne(r’) then 3. else ifr = star(v, 1, r2) then
4: return SIZE-NE(r') 4 return SIZE-NE(r1) x SIZE-NE(r2)
5. else ifr = sing(v, 81 - - - §,,) then
6: return 1

Figure 6:Computing the size of the set represented by a SRED

Proof. Correctness immediately follows from the following set-theoretic properties of projedlion= 0, (s; |
s2)ai = (s1)ai U (s2)ai, (81 * $2)ai = (81)ai If the i-th coordinates o#; is non-L and (s; * $2)ai = ($2)a:
otherwise, and (u1, . .., un) ta; = {u;} foru; # L.

For the complexity, we assume the procedure PROJ-NE to be memoized, i.e., if itis applied to the same arguments
second time, it immediately returns the previous result in constant time. We can implement such memoization by
using a hash table. Then the body of the procedure PROJ-NE is executed at most once per each rartaaily,
the procedure PROJ-NE is applied only to the node&'#T s, ...5, with 3; = 1. The number of such nodes is at
most4 - 3"|6 4|h|EVAL (r)a;|, because to havg, = 1, it must have a descendant node of the faing(v, - - -) with
v € EVAL(r)a;. Since such a SRED node is created only at the ancestor nodes tfe original input tree (whose
number is at most|EVAL (r)a;|) and at each of such ancestors at most"|0.4| SRED nodes are created, we obtain
the bound on the number of the nodes. By using list-concatenation for representing sétiheibody of PROJ-NE
can be executed in constant time. Hence, we obtain the desired complexity. O

Theorem 12(SELECTION). By using memoization, the proced8EL(7, u,) computes the SRED representation of
the seEVAL (7)[;., in time O(min(m, 3"h|d 4|)) wherem is the number of nodes of

Proof. Correctness immediately follows from the following set-theoretic properties of seledtion: = 0, (s; U
52) i) = (81) i) Y (52)firu]s (51 % 82)[i:0) = (51)[i: * 52 if the i-th coordinates of; is non-L and(sy * 52) (5] =
51 % (82)[i:u) Otherwise, and(u1, ..., un) i) = {(U1, ..., U1, Uig1, ..., up)} fOr u; = u. The side condition
v < winlines 1 and 3 is justified by Lemnif if the comparison does not hold, EVAL-NE) cannot contain.

For the complexity, memoization ensures that the procedure SEL-NE is called at most once per each-node of
Since the test < u succeeds only at the node constructed at an ancestor (in thg tfee, the procedure SEL-NE
is executed only on the nodes constructed at an ancestoy @f their direct child. Note that the number of the
ancestor nodes in the input tree is at migsand on each of such nodes at mbs8™ |5 4| SRED-node is created. By,
multiplying them, we obtain the desired complexity. O

Corollary 13 (MEMBERSHIP). Given a SRED and a tuple(uy, . . ., u,,) of nodes, we can test whether , . . ., uy,)
is in EVAL (r) or not in timeO(n min(m, 3"h|J 4))-

Proof. RepeatSELECTION® times. O

Another interesting operation that can easily be executed on SRED without evaluation is, counting of the size of
the represented set.

Theorem 14 (Size). By using memoization, given a SREDthe size of the represented $EVAL (r)| can be
computed in tim&(m) wherem is the number of nodes of

Proof. Figure[@ shows the implementation. By memoization, the procedure SIZE-NE is calléiches, and the
body of the procedure runs in constant time. Correctness follows from the following facts:sa| = |s1| + |s2],
|s1 # 2| = |s1] % |s2], and|{(u1,...,us)}| = 1.

2precisely speaking, since it is notlisjoint union this time, list-concatenation based implementation may cause duplication. It, however, can
be removed by a linear time ‘uniq’ algorithm.

11

Note that, the procedure SIZE-NE is computing the size of the represented set for all nodByg irsing the size
information, the one-by-one enumeration procedure shown in Hjisrenproved to dog-delayenumerator.

Corollary 15 (LoG-DELAY-ENUM). For a SREDr, we can enumerate the elementEdAL (r) in log-delay after
O(m) time preprocessing. That is, in the enumeration process, the time required to output adjacent two elements are
O(log, |EVAL (r)|) for any adjacent pairs, and also the first element is generate&d(ing, |[EVAL (r)|) time.

Proof. By using the size information obtained by SIZE-NE, without loss of generality we can as&Mdle-NE ()|
< |EVAL-NE(r9)| in line 1 to 3 of the EVAL-NE-1BY1 procedure, (otherwise swapandry, which only changes
the order but not the enumerated set). Note that this impliéEVAL-NE ()| < |EVAL-NE(r)].

Then, we can show that during the computation of EVAL-NE-1BY ¥), we enter the procedure EVAL-NE-1BY1
at mostlog, (|EVAL-NE(r)|) + k + 1 times between any two successive calls fdjand between the beginning of
the computation and the first call), wherek = dim(r) — 1. The same estimatidog, (|EVAL-NE(7)|) + k + 1
applies also to the number of times we leave the procedure between two successive ¢alitbbetween the last
call to f and the end of the computation, under the assumption that tail-calls are optimized away). This proves the
corollary.

The proof of the above statement is by induction on structure. diVhenr = sing(v, 51, ..., (,), only one
call to f is made and between the call and the start of the computation of EVAL-NE-UBY, exactly one call to
EVAL-NE-1BY1 is made. Sincéog,(|EVAL-NE(7)|) + k+ 1 > 1, we have proved the inductive statement for this
case. When = cup(v,71,72), interval of two successive calls tbis at mostmax(log, (|JEVAL-NE(r1)]) + &k +
1,log,(|EVAL-NE(72)]) + k+ 1) < log,(|[EVAL-NE(r)|) + k& + 1 by induction hypothesis. The delay to the first call
to fis 1 + log,(|[EVAL-NE(r1)|) + k£ + 1, which is less than or equal tog,(|EVAL-NE(r)|) + k + 1, because of
our assumption on the size of. Between the last call t¢ and the end of the computation, the number of times we
leave the procedure can be made at nast(|EVAL-NE(r2)|) + k + 1 < log,(|[EVAL-NE(r)|) + k + 1; since the
second call to EVAL-NE-1BY1 is a tail-call, return from the call can directly leave the whole comp&atighen
r = star(v, r1,72), the delay is at most+ (log, (|EVAL-NE (71)]) + k1 + 1) 4+ (logy (|JEVAL-NE((r2)|) + ko + 1) for
somel + k1 + ko = k. Since we havélog, (|EVAL-NE(r1)]) + log, (|JEVAL-NE(r2)|)) = log,(|[EVAL-NE(r)|), the
induction statement is now proved. O

4.4. Generalizations to Unranked Trees

So far, we have considered only binary trees. In many applications, however, we are interesteshkedrees
with varying number of child nodes. For example, in XML treléd][such as XHTML documents, the number of
children may not be two, or even, may differ even between two nodes with the same label (&g afordered
list) node can have have an arbitrary numbexlof (list item) child nodes).

To deal with unranked trees, we encode such trees to binary trees. A widely used encécimg éncodingin
a binary tree obtained as the fc-ns encoding of an unranked tree, the first child of each node is mappgto the
child of the corresponding node in the original unranked tree, and the second child of each node is mapped to the
next siblingin the unranked tree. It is a folklore result that the encoding preserves the regularity of queries, i.e., any
regular query for unranked trees can be converted to a regular query on the encoded trees. Hence, by first encoding the
unranked input trees and the queries to the binary-tree form and then running S-QUERY-RENan compute the
linear-size representation of the answer sets of regular queries. One problem of fc-ns encoding is the time complexity
of operations on SRED that depends on the fakfdine height of the tree. Suppose an original unranked tree has small
heighthy and nodes with large number,(~ [t|) of children (which is often the case for most XML documents).
The problem is that the height of the fc-ns encoded tre@(is,w,). To deal with such trees, we recommend using
another encoding, namely, thd encodingto reduce the complexity t®(hlogwy). In bb encoding, the list of
children of each node is encoded tbaanced binary treevhose left-to-right sequence of leaf nodes corresponds to
the child sequence in the original tree. Such an encoding also preserves regularity, because the first-child’ and the
‘next-sibling’ relations remain regular. Moreover, since the height of a balanced binary tree is in the logarithmic order
of the number of the leaves, the height of the bb-encoded tree redud¢atdog |t]).

3Such tail-call optimization is performed in almost all practical compilers for popular programming languages. Even if it does not, the tail-
recursion can easily be rewritten to an iteration by while-loop manually.

12

5. Application

SRED is developed for the XML transformation language MTE).[Let us illustrate the benefits of SRED by
the following pseudo code for XML translation:

{gather « where z:<person> do
<row>
<col> {gather y where z//l<name>/ y do y}</col>
{gather z where z:<person> & document-order(z, x) do
<col> ---</col> }
</row> }

The program takes a document containing a liskpérson> elements and generates some triangular matrix ta-
ble. The first query #:<person> " lists up all the<person> elements, and for each of them, the second query
“xll<name>/ " selects a descendaptof = labeled<name> (for simplicity, we assume that sughuniquely ex-

ists). If we really run for each the second query, which takes in genepd|t|) time where|t| is the size of the tree,
total running time of the query becomes quadratic, because there may be linearlgpeasgn> nodes. Rather, as
pointed out in[lLE], it is better to regard the second query dsraary queryfor selecting pairgz, y). By using SRED,

the answer set of such a binary query can be computed in linear time. Furthermore,dB1 HETION operation
followed by theEVALUATION operation, for each: we can obtain the correspondiggn time O(hg log |t|). Total
running time reduces tO®(holt|log |t|). So far, we could have used the FFG algoriti@h(pr equivalently, query
with SRED directly followed byevALUATION) for the same purpose, because its running time is linear under the
assumption thay uniquely exists for each. Consider, then, the third query that selects<gérsorr elements:
precedinge in the document order (preorder). Similarly, we run the query as a binary query for selectingepajts

In this case, the size of the answer set is quadratic. If we use the FFG algorithm, we (igépworking space

for carrying out the binary-query based approach. While, with SRED, it requires((t}) working space. This
makes feasible to run the transformation over larger inputs, which could not be done without SRED due to memory
shortage.

6. Conclusion and Future Work

The paper introduced a data structure named SRED (Set Representation by Expression Dags), which allows rep-
resenting answer sets of regular tree queries compactly. Here is the summary of its performance-toy theery
defined by an automaton with transition functig, with an input tree¢ and an output set:

QUERYING | EVALUATION || Size (number of nodes) of SREB- m)
O(3™[0.4]lt]) \ O(n?|al) H at mostmin(2n/|al, 4-3"|.4][¢|)

Regardless how large the output answer set is, the time for computing its SRED representation is independent of it;
it is always linear with the size of the input. Evaluation (or decompression) of SRED only depends on the size of
the answer set and is independent from the input size. The size of the SRED representation stays at the minimum of
them. Thus, for a large answer set (ea|,~ |t|™), SRED works as a concise representation of the set, and even for
asmall (a| < [t]) answer set that could not benefit from the compression, it works no worse than non-compressed
representations. Furthermore, SRED allow several kinds of direct manipulations on the represented sets, without
decompression:

PROJECTION \ SELECTION | Size
O(min(m, 3"h|d 4]p|)) O(min(m, 3"h|04])) | O(m)
(Ip| is the size of the projected set)

In the paper, we have used ttetal deterministictree automaton as a representative of regular queries. One
possible direction for future work is to extend the SRED representation to support other query formalisms directly,
rather than through a conversion to a deterministic automaton. In fact, the algorithms given in this paper works without
any change fopartial deterministic automata, and, as long as itnembiguousfor non-deterministic ones. It seems
an interesting question whether there is a possibility to support arbitrary non-deterministic tree automata.

13

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. This work was partly supported by

the Japan Society for the Promotion of Science.

References
[1] H. Hosoya, B. C. Pierce, Regular expression pattern matching for XML, Journal of Functional Programming 13 (2003) 9€de{l004.
10.101//50956 /96802004410
[2] J.W. Thatcher, J. B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic, Mathematical
Systems Theory 2 (1968) 57-81d01:10.1007/BF01691346
[3] D. Niwinski, Fixed points vs. infinite generation, in: Logic in Computer Science (LICS), 1988, pp. 402-¢f19.0.1109/LICS.
1988.513/7 .
[4] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing XPath queries, ACM Transactions on Database Systems 30 (2005)
444-491/doi:10.1145/1071610.1071614
[5] G. Gottlob, C. Koch, Monadic datalog and the expressive power of languages for Web information extraction, Journal of the ACM 51 (2004)
74-113!doi:10.1145/962446.962450
[6] F. Neven, J. V. D. Bussche, Expressiveness of structured document query languages based on attribute grammars, Journal of the ACM 49
(2002) 56-100d01:10.1145/505241.505245
[7] H. Meuss, K. U. Schulz, F. Bry, Towards aggregated answers for semistructured data, in: International Conference on Database Theory
(ICDT), 2001, pp. 346—-36(doi:10.1007/3-540-44503-X 22|
[8] E. Filiot, S. Tison, Regulan-ary queries in trees and variable independence, in: International Conference on Theoretical Computer Science
(IFIP TCS), 2008, pp. 429-448i0i:10.1007/978-0-387-09680-3 29|
[9] J.Flum, M. Frick, M. Grohe, Query evaluation via tree-decompositions, Journal of the ACM 49 (2002) 716ei752.1145/602220.
002222 .
[10] G. Bagan, MSO queries on tree decomposable structures are computable with linear delay, in: Computer Science Logic (CSL), 2006, pp.
167-181/doi:10.1007/11874683 111
[11] B. Courcelle, Linear delay enumeration and monadic second-order logic, Discrete Applied Mathematics 157 (2009) 267@si2700.
10.1016/j.dam.2008.08.021 |
[12] P.F. Dietz, Maintaining order in a linked list, in: ACM Symposium on Theory of Computing (STOC), 1982, pp. 128el4D0.1145/
8000/0.802184
[13] C. Okasaki, Amortization, lazy evaluation, and persistence: Lists with catenation via lazy linking, in: Foundations of Computer Science
(FOCS), 1995, pp. 646—65d0i:10.1109/SFCS.1995.492666 |
[14] T.Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, Extensible markup language"™Nttp://www.w3.org/XML/ (2000).

(18]

(16]

K. Inaba, H. Hosoya, XML transformation language based on monadic second order logic, in: Programming Language Technologies for
XML (PLAN-X), 2007, pp. 49—60.
A. Berlea, H. Seidl, Binary queries for document trees, Nordic Journal of Computing 11 (2004) 41-71.

14

http://dx.doi.org/10.1017/S0956796802004410
http://dx.doi.org/10.1017/S0956796802004410
http://dx.doi.org/10.1007/BF01691346
http://dx.doi.org/10.1109/LICS.1988.5137
http://dx.doi.org/10.1109/LICS.1988.5137
http://dx.doi.org/10.1145/1071610.1071614
http://dx.doi.org/10.1145/962446.962450
http://dx.doi.org/10.1145/505241.505245
http://dx.doi.org/10.1007/3-540-44503-X_22
http://dx.doi.org/10.1007/978-0-387-09680-3_29
http://dx.doi.org/10.1145/602220.602222
http://dx.doi.org/10.1145/602220.602222
http://dx.doi.org/10.1007/11874683_11
http://dx.doi.org/10.1016/j.dam.2008.08.021
http://dx.doi.org/10.1016/j.dam.2008.08.021
http://dx.doi.org/10.1145/800070.802184
http://dx.doi.org/10.1145/800070.802184
http://dx.doi.org/10.1109/SFCS.1995.492666
http://www.w3.org/XML/

	Introduction
	Preliminaries
	N-ary Regular Tree Queries
	SRED: Set Representation by Expression Dags
	Definition
	N-ary Query Algorithm Using SRED
	Direct Manipulation of SRED
	Generalizations to Unranked Trees

	Application
	Conclusion and Future Work

