
Compact Representation for Answer Sets ofn-ary Regular Queries

Kazuhiro Inabaa, Haruo Hosoyab

aNational Institute of Informatics, 2-1-1, Hitotsubashi, Chiyoda-ku, Tokyo, Japan
bThe University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Abstract

An n-ary query over trees takes an input treet and returns a set ofn-tuples of the nodes oft. In this paper, a compact
data structure is introduced for representing the answer sets ofn-ary queries defined by tree automata. Despite that
the number of the elements of the answer set can be as large as|t|n, our representation allows storing the set using
onlyO(|t|) space. Several basic operations on the sets are shown to be efficiently executable on the representation.

Key words: Tree Automata; Data Structure; XML

1. Introduction

The finite state automaton is a well-known model for representing properties for trees and strings. The class of
queries definable by finite state automata is calledregularand is widely used both in theory and in practice. A number
of query formalisms are shown to be equivalent or subsumed by regular queries. Examples of such formalisms include,
regular expression pattern [1], monadic second-order logic [2], µ-calculus [3], Core XPath [4], monadic Datalog [5],
Boolean attribute grammar [6], etc.

In this paper, we are interested in the space complexity of then-ary queries defined by tree automata. Ann-ary
query over trees takes an input treet and returns a set ofn-tuples of the nodes oft. The number of elements in the
answer set of ann-ary query may be as large as|t|n where|t| is the number of the nodes oft. Also, usually, storing
a set of|t|n elements requires at leastc|t|n space wherec is the space required to store a single element (in this case,
onen-tuple of nodes). TheO(|t|n) space consumption is unavoidable if the elements are chosen in a perfectly random
manner; it is a well-known consequence from information theory. Note, however, we are interested in more practical,
less random queries. Queries defined by tree automata have much more structure than random ones. By exploiting
the structural characteristics of regular queries, we can represent the answer sets in somecompressedform.

Let us explain the idea by an example. Consider the regular query “select all pair of nodes(x, y) such thatx is in
the left subtree of the root node andy is in the right subtree of the root node” with the input treet as in Figure1. Then
the answer set consists of nine elements:{(v1, v4), (v2, v4), (v3, v4), (v1, v5), (v2, v5), (v3, v5), (v1, v6), (v2, v6), (v3,
v6)}. Obviously, if an input tree hasn nodes both in the left and the right subtrees, the size of the answer set will ben2,
which is quadratic in the number2n+1 of the nodes. Our approach for avoiding the quadratic blow-up is to represent
the answer set by a symbolicexpression, instead of computing the concrete list of elements. For this example, we
can represent the answer set by the expression{v1, v2, v3} × {v4, v5, v6} where× denotes the product of two sets.
Counting the number of variablesvi and the operator, the length of the expression is7 instead of9. Analogously, for
the general case withn nodes in both the left and the right subtrees, the answer set can be represented by an expression
of length2n+ 1, which consumes only linear space with respect to the size of the input tree.

The contribution of our work is in establishing the expression-based compact representation as illustrated above.
In fact, only two operators–·∪ (disjoint union) and∗ (a slight variant ofproduct)–are necessary for achieving the
linear-size representation of the answer sets of regular queries. We show that for any fixedn-ary regular query and an
input treet, the answer set can always be represented by an expression on·∪ and∗ with every leaf expression being
a singleton set of an input node. By sharing common sub-expressions, such an expression can always be represented

Email addresses:kinaba@nii.ac.jp (Kazuhiro Inaba),hahosoya@is.s.u-tokyo.ac.jp (Haruo Hosoya)

Preprint submitted to Theoretical Computer Science June 8, 2010

v0

v1

v2 v3

v4

v5 v6

t =

v2 v3 v5 v6

Figure 1:Sample Input

*

{v
1
}

∪

{v
2
}

{v
3
}

∪

∪

{v
5
}

{v
6
}

∪

{v
4
}{v

1
} {v

2
} {v

5
}{v

4
}

Figure 2:Query Result in Expression-Based Representation

by a dag of size at most4 · 3n|δA||t| where|δA| is the size of the deterministic automaton representing the query.
That is, regardless of the arityn of the query, the data complexity with respect to the size|t| of the input is always
linear! As an instance, Figure2 shows the expression-dag (just a tree in this case) representation of the query result of
the previous example. The factor complexity3n is sufficiently low for queries with smalln such as binary or ternary
queries, which are the most common cases occur in practice; after all, it is quite rare to run, say, a 100-ary query.

Our dag-based representation is namedSRED (Set Representation by Expression Dags), which enjoys good time
complexity as well as size-efficiency. The SRED representation of the answer set can always be computed from
the input treet in timeO(3n|δA||t|), regardless how large the actual answer set is. Also, evaluation (or we could
say, decompression) of a SRED to yield the concrete list of answer tuples can be done in timeO(n2|a|), where
|a| is the number of the answers. By combining these two steps, we obtain an algorithm for regular queries in
the optimal data complexityO(|t| + |a|). More than that, on SRED, we can carry out the following important
operationswithout decompressingit: (1) SELECTION: for an answer sets, the SRED representation of the sets[i:u] =
{(v1, . . . , vi−1, vi+1, . . . , vn) | (v1, . . . , vi−1, u, vi+1, . . . , vn) ∈ s} can be computed in timeO(3nh|δA|) whereh
is the height of the input tree for binary trees and is the height timeslog |t| for unranked trees, (2) PROJECTION:
the sets@i = {vi | (v1, . . . , vn) ∈ s} can be computed in timeO(3nh|δA||s@i|). Besides the expression-based
representation, another key idea of SRED is to remember for every sub-expression the least common ancestor of the
nodes contained in the set represented by the sub-expression. The information allows locating the leaf expressions
containing each input node in time proportional only to the height of the expression-dag.

Related Work. SRED has much similarity to the Complete Answer Aggregate (CAA) introduced by Meuss, Schulz,
and Bry [7] as a compact representation of answer sets of queries. The size of a CAA isO(h|t|) which is competitive
to ourO(|t|). CAA is also suitable for applying several operations such as membership testing. The main advantage
of our work is that it supports arbitrary regular queries, which is strictly more expressive than the query language used
in [7]. Though an attempt to represent the answer sets of regular queries with CAA is given by Filiot and Tison [8]
through a decomposition of queries, the space complexity isO(|t|dϕ) for some constantdϕ depending on the query,
which grows ton in the worst case. Furthermore, precise complexity of operations such as selection or projection for
CAA was not estimated.

An algorithm (FFG algorithm) for answering regularn-ary queries in the optimal time complexityO(|t|+ |a|) is
shown by Flum, Frick, and Grohe [9]. Since no compact data structure was used in their work, the FFG algorithm
requiresO(|a|) space to be carried out. In fact, our algorithm can be regarded as a space-efficient variant of the FFG
algorithm. The expression dag generated in our algorithm precisely corresponds to the set operations executed in the
FFG algorithm. On the other hand, the class of queries that the FFG algorithm can be applied to is more general than
our algorithm. The FFG algorithm can also be used for queryingn-tuples ofsets ofnodes ofgraphsthat have a tree
decomposition, while our algorithm only supports queries forn-tuples of nodes of trees. It will be future work to
determine whether our compact representation of the answer sets can be extended to more general classes of query.

Another related area of research is becoming hot recently, namely,linear-delay enumerationof MSO query results
[10, 11]. In their algorithms, the input tree of a query is first converted to an intermediate data structure that allows
linear-delay enumeration of the query results. Since the intermediate data structure is of linear size with respect to the
input tree, it can also be used as a compact representation of the answer set. Compared to our SRED representation,
however, their data structures are concentrated only for linear-delay enumeration and other operations such as selection
or projection are not supported.

2

Outline. The paper is organized as follows. In Section2, we introduce basic notations on trees and tree languages.
Section3 presents a simple but inefficient algorithm for executingn-ary queries on binary trees, as the basis of our
main algorithm. Then, in Section4, we give our main results. We introduce the SRED data structure as a compact
representation of set of tuples, and show that just by using SRED, the previous naı̈ve algorithm can be turned into one
that efficiently produces a compact answer-set representation. Section5 shows an application to XML processing.
Section6 concludes.

2. Preliminaries

In this paper, we mainly considerbinary trees, in which every node has either zero or two children. Generalization
to the trees with other arity is briefly mentioned in the end of Section4. Let Σ be a finite alphabet that is a disjoint
union of two alphabetsΣ(0) andΣ(2). A binary tree(or simply, atree) overΣ is a tuplet = (Vt, label t, lt t, rt t, root t)
whereVt is the disjoint unionV (0)

t ·∪ V (2)
t of finite sets ofnodes, label t : V (0)

t → Σ(0) ·∪ V (2)
t → Σ(2) is the label

function, lt t, rt t : V (2)
t → Vt is theleft- andright- child function respectively, androot t ∈ Vt is theroot node. We

call the nodes inV (0)
t leaf nodes, and the nodes inV (2)

t branching nodes. We require a tree to satisfy the following
conditions: (1) rooted: there is no nodev ∈ Vt such thatlt t(v) = root t or rt t(v) = root t, (2) acyclic: there is no
nodev ∈ Vt that is reachable from itself by finite applications oflt t andrt t, and (3) tree-formed: for any non-root
nodev ∈ Vt \ {root t}, there exists a unique nodeu called theparentof v such thatlt t(u) = v ∨ rt t(u) = v. A
structure only satisfying (1) and (2) is called adag. Forv1, v2 ∈ Vt, the binary order relationv1 ≤t v2 is defined to
hold if and only ifv2 is reachable fromv1 by zero or finitely many applications oflt t andrt t. We usually omit the
subscriptt if clear from the context. By|t| we denote the number|Vt| of the nodes. We use the notationa⟨v1, v2⟩ to
denote a nodev such thatlabel t(v) = a, lt t(v) = v1, andrt t(v) = v2.

For a treet, we assume that each nodev ∈ Vt can be stored on memory in constant space independent from|t|.
In practice, this implies the assumption that the treet fits in the address space of the computer and each node can be
represented by a single pointer. We also assume that the operationslabel , lt , rt , and≤ can be executed in constant
time. In particular, we can test the relation≤ in constant time by, e.g., the preorder/postorder numbering [12]. Again
by the assumption that|t| fits in the address space, preorder and postorder numbers can be stored in constant space.

A tree languageover Σ is a set of trees overΣ. By TΣ, we denote the set of all trees overΣ. An important
class of tree languages is defined in terms of tree automata. A(bottom-up deterministic) tree automatonoverΣ is a
tupleA = (QA, δA, FA) whereQA is the set of states,δA : (Σ(0) ∪ (Σ(2) × QA × QA)) → QA is the transition
function, andFA ⊆ QA is the set of accepting states. The subscriptA is omitted if clear from the context. Arun
of a tree automatonA on the input treet is the unique functionρ : Vt → QA such thatρ(v) = δA(label t(v)) if
label t(v) ∈ Σ(0) andρ(v) = δA

(
label t(v), ρ(lt t(v)), ρ(rt t(v))

)
if label t(v) ∈ Σ(2). The automatonacceptst if and

only if ρ(root t) ∈ FA. By L(A), we denote the set of trees accepted byA. A tree language is said to beregular if it
is equal toL(A) for some tree automatonA.

3. N-ary Regular Tree Queries

As a basis of our algorithm for computing the compact representation of answer sets, we first explain a basic
bottom-up algorithm for regular queries withO(|t|n+1) time complexity, which has already been known in the lit-
erature. Our new algorithm is obtained by changing the data structure used in the algorithm, as explained later in
Section4.

An n-ary queryfor trees overΣ is a functionψ that maps each treet ∈ TΣ to a set ofn-tuples of its nodes. Let
B = {0, 1}, Σ(0)

n = Σ(0) × Bn, Σ(2)
n = Σ(2) × Bn, andΣn = Σ(0)

n ·∪ Σ(2)
n . For a tree languageL ⊆ Σn, ann-ary

query defined byL is the functionψL(t) = {(v1, . . . , vn) | mark(t, v1, . . . , vn) ∈ L} wheremark(t, v1, . . . , vn) is a
treem = (Vt, labelm, lt t, rt t, root t) with labelm(v) = (label t(v), b1 · · · bn) wherebi = 1 if v = vi and0 otherwise.
Intuitively, a query defined by a languageL selects a tuple(v1, . . . , vn) if and only if L contains a tree obtained by
marking each selected nodevi with 11. A query defined by a regular languageL is called aregular query. In the rest

1 In general,Lmay contain “ill-marked” trees that have two or more nodes marked asbi = 1 for the samei and hence can never be in the range
of mark . Such trees, however, are simply ignored and have no effect on the definition ofψL.

3

of the paper, we assume the regular languageL to be given as a tree automatonA such thatL = L(A). Nevertheless,
our algorithm can be applied, without changing the data complexity, to many other query formalisms as long as they
define regular languages by first compiling them into tree automata and then running the algorithm.

The most näıve algorithm for a regularn-ary query is, to try all possible markings. Given an automatonA over
Σn and a treet, for all (v1, . . . , vn) ∈ V n

t we generate the marked treemark(t, v1, . . . , vn) and test whether it is
accepted byA. If it is, (v1, . . . , vn) is an answer and hence we output it. This algorithm takesO(|t|n+1) time,
because computing each run ofA takesO(|t|) time and we try|t|n runs in total.

Another approach is to try all marking parallelly by a single bottom-up run. The following recursive procedure
QUERY-RUNA takes a nodev of t and computes a table containing the result of the parallel marking run.

QUERY-RUNA(v)
1: r ← new 2-dimensional array of size|QA| × 2n with each element initialized to∅
2: if label(v) ∈ Σ(0) then
3: for each ((label(v), b0) 7→ q0) ∈ δA do
4: r[q0, b0]← singleton(v, b0)
5: else if label(v) ∈ Σ(2) then
6: r1 ← QUERY-RUNA(lt(v))
7: r2 ← QUERY-RUNA(rt(v))
8: for each ((label(v), b0), q1, q2 7→ q0) ∈ δA do
9: for each disjoint b0, b1, b2 in 00 . . . 00 to 11 . . . 11 do

10: r[q0, b0|b1|b2]← r[q0, b0|b1|b2] ·∪ singleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2]
11: return r

By singleton(v, β1 · · ·βn) we denote the singleton set{(u1, . . . , un)} whereui = v if βi = 1 andui = ⊥ if
βi = 0. Here,⊥ is a special symbol not contained inVt. In line 9, for each disjoint iterates over pairs of the
form (b1 = β11 · · ·β1n, b2 = β21 · · ·β2n) ∈ (Bn)2 such that for all1 ≤ i ≤ n, at most one of{β0i, β1i, β2i}
is 1, with β01 · · ·β0n = b0. Note thatb0 is determined by the outerδA loop and fixed during each single inner
loop. The operator| is for bitwise-or and·∪ is disjoint union of sets (the operands are indeed disjoint, as explained
later). The operator∗ is a kind of “product” operation that combines two sets of tuples, defined as follows:S ∗ T =
{(u1, · · · , un) | (s1, · · · , sn) ∈ S, (t1, . . . , tn) ∈ T, ∀i : (ui = si ∧ ⊥ = ti) ∨ (⊥ = si ∧ ui = ti)}. For example,
{(v1,⊥,⊥), (v2,⊥,⊥)} ∗ {(⊥,⊥, v3), (⊥,⊥, v4)} is equal to{(v1,⊥, v3), (v1,⊥, v4), (v2,⊥, v3), (v2,⊥, v4)}. Let
us remark that we never take∗-product of sets that have tuples with non-⊥ nodes on the same position, as will be
shown in Lemma1.

Let us explain how the algorithm works. Letr = QUERY-RUNA(v) for a nodev ∈ Vt. For eachq ∈ QA and
b = β1 · · ·βn ∈ Bn, r[q, b] is a set ofn-tuples over the setVt∪{⊥}. A tuple in(Vt∪{⊥})n is called apartial answer
to the query. For example,(v1,⊥) is a partial answer that selects the nodev1 as the first coordinate and leaves the
second coordinate to be selected later. Intuitively,r[q, b] is the set of partial answersα such that, if a tree is marked
according toα, then at the nodev, the run of the automatonA reaches the stateq. For example, if(v1,⊥) ∈ r[q, b],
it means that “if the nodev1 is marked as the first component of the answer and no node in the subtree underv is
marked as the second component,A reaches the stateq at nodev”. As an example, let us assumev to be a leaf
node labeledσ ∈ Σ(0) andA to define a binary query. SupposeδA has the following four rules:δA((σ, 00)) = q1,
δA((σ, 01)) = q2, δA((σ, 10)) = q1, andδA((σ, 11)) = q2. Then, the tabler = QUERY-RUNA(v) is:

r[q1, 00] = {(⊥,⊥)} r[q1, 01] = ∅ r[q1, 10] = {(v,⊥)} r[q1, 11] = ∅
r[q2, 00] = ∅ r[q2, 01] = {(⊥, v)} r[q2, 10] = ∅ r[q2, 11] = {(v, v)}.

The setr[q1, 00] contains(⊥,⊥) because if we do not select any node belowv, the automaton reaches the stateq1. On
the other hand, the setr[q2, 00] is empty, because we cannot reach the stateq2 at nodev if we do not select any node.
Similarly, r[q1, 01] is empty, because we cannot reach the stateq1 if we select the second coordinate of the answer.
On the other hand, we haver[q2, 01] = {(⊥, v)}, because if we choosev as the second coordinate, the automaton
reaches the stateq2.

The indexb of r calledflag denotes the already selected coordinates; thei-th coordinate of the elements ofr[q, b]
is non-⊥ if and only if thei-th bit of b is 1. Thus we have the following lemma.

4

Lemma 1. Let r = QUERY-RUNA(v) for somev and (u1, . . . , un) ∈ r[q, β1 · · ·βn]. For all 1 ≤ i ≤ n, we have
(ui ∈ Vt andv ≤t ui) if βi = 1, andui = ⊥ if βi = 0.

Proof. The proof is by induction on the structure of the tree rooted atv. If v is a leaf node,r[q, b] is either empty (the
case((label(v), b) 7→ q) /∈ δA) or a singleton setsingleton(v, b). The lemma obviously holds for the empty case, and
the latter case is also immediate from the definition ofsingleton(v, b).

If v is a branching node, by the construction of the setr[q, b], the condition(u1, . . . , un) ∈ r[q, b] implies that
we have(u1, . . . , un) ∈ singleton(v, b0) ∗ r1[q1, b1] ∗ r1[q2, b2] for someq1, q2 ∈ QA and disjointb0, b1, b2 ∈ Bn

with b0|b1|b2 = b. Now, assume that thei-th bit (βi) of b is 0, which at the same time means that thei-th bits of
b0, b1, andb2 is 0. By the definition ofsingleton and the induction hypothesis, thei-th coordinate of each element
of singleton(v, b0), r1[q1, b1], andr2[q1, b2] is ⊥. Hence, from the definition of∗, ui also has to be⊥ in this case.
Contrarily assumeβi = 1, which means that exactly one of thei-th bits ofb0, b1, andb2 is 1. Then, if we take any
three tuples(s1, . . . , sn) ∈ singleton(v, b0), (t1, . . . , tn) ∈ r1[q1, b1], and(w1, . . . , wn) ∈ r2[q2, b2], exactly one of
si, ti, andwi is non-⊥ due to the induction hypothesis. Let us callx the non-⊥ node. We havev ≤t x, because
si = v, and by induction hypothesislt(v) ≤t ti andrt(v) ≤t wi if they are not⊥. The definition of∗ tells us thatui

is one of such-chosenx, which is non-⊥, andv ≤t x as desired.

The lemma ensures two disjointness properties in the procedure QUERY-RUNA. First, the∗-product is always
taken between the sets with disjoint selected-coordinates. That is, we need to computeS ∗ T only for the setsS, T
such that(. . . , vi, . . .) ∈ S and(. . . , ui, . . .) ∈ T implies eithervi or ui is⊥. This holds because in line 10 (∗ occurs
only here) of the QUERY-RUNA algorithm, the flagsb0, b1, andb2 are disjoint. Note that, for such a case, we have
|S ∗ T | = |S| · |T |. Second,·∪ is indeed taken between disjoint sets. This is because the operands of·∪ (whose only
one occurrence is in line 10) are constructed by∗-product either over different flags or over different states, i.e., the
union is of the formsingleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2] ·∪ singleton(v, b′0) ∗ r1[q′1, b′1] ∗ r2[q′2, b′2] where either
(b0, b1, b2) ̸= (b′0, b

′
1, b

′
2) or (q1, q2) ̸= (q′1, q

′
2). Disjointness in the former case follows from Lemma1, and in the

latter case it follows from the determinism of the automatonA.
The answer set of the query can be calculated from the result of QUERY-RUNA applied to the root node, namely,

r = QUERY-RUNA(root t). For eachq ∈ FA, recall that the setr[q, 1 · · · 1] is the set of tuples such that “if the tree
is marked according to the tuple,A reaches the stateq at the root node”, which is by definition the answer set.

Theorem 2. ψL(A)(t) =
∪

q∈FA
QUERY-RUNA(root t)[q, 11 · · · 11].

Proof. Let v1, . . . , vn ∈ Vt be fixed andρ be the unique run on the treemark(t, v1, . . . , vn) byA. Let v ∈ Vt. Let
partial(v) = (u1, . . . , un) with ui = vi if v ≤t vi and otherwiseui = ⊥. Let flags(v) = β1 · · ·βn with βi = 1 if
v ≤t vi and otherwiseβi = 0. We can prove for allv in Vt the following claim:

for all q ∈ QA, partial(v) ∈ QUERY-RUNA(v)[q,flags(v)] if and only if q = ρ(v).

We have(v1, . . . , vn) ∈ QUERY-RUNA(root t)[q, 11 · · · 11] if and only if q = ρ(root t), by applying the claim to the
root nodev = root t. It, together with the definition ofψL(A), proves the desired result.

Proof of the claim is done by induction on the structure of the tree rooted atv. Consider the case whenv
is a leaf. From the leaf-node case of the QUERY-RUNA procedure, we have QUERY-RUNA(v)[q,flags(v)] =
singleton(v,flags(v)) = {partial(v)} when((label(v),flags(v)) 7→ q) is in δA, and otherwise it is empty. This
already shows the claim for the leaf case, because the discriminating condition is equivalent toq = ρ(v).

Consider the case whenv is a branch node. Letr1 = QUERY-RUNA(lt(v)) andr2 be that ofrt(v). We first
show the “if” direction; assumeq = ρ(v). Let q1 = ρ(lt(v)), q2 = ρ(rt(v)), b0 = β1 · · ·βn whereβi = 1
iff v = vi, b1 = flags(lt(v)), and b2 = flags(rt(v)). Note thatflags(v) = b0|b1|b2, and by the assumption
q = ρ(v), it must be the caseq = δA((label(v), b0), q1, q2); the line 10 of the procedure QUERY-RUNA is executed
in this variable binding. That is, the set QUERY-RUNA(v)[q,flags(v)] is a superset ofsingleton(v, b0) ∗ r1[q1, b1] ∗
r2[q2, b2]. By the induction hypothesis, the latter set contains the unique element of the productsingleton(v, b0) ∗
{partial(lt(v))} ∗ {partial(rt(v))}, which ispartial(v) as desired. For the “only if” direction, assumepartial(v) ∈
QUERY-RUNA(v)[q,flags(v)]. From the construction of this set in QUERY-RUNA, it implies that for some dis-
joint b0|b1|b2 = flags(v) andq1, q2 ∈ QA with δA((label(v), b0), q1, q2) = q, it must be the casepartial(v) ∈
singleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2]. But by Lemma1, it can only happen whenb1 = flags(lt(v)), b2 =

5

flags(rt(v)), partial(lt(v)) ∈ r1[q1, b1], andpartial(rt(v)) ∈ r2[q2, b2]; other entries ofr1 andr2 cannot gener-
atepartial(v) by ∗-product. Now, from the induction hypothesis we obtainq1 = ρ(lt(v)) andq2 = ρ(rt(v)), and
therefore,ρ(v) = q.

What is the time complexity of this algorithm? For each nodev ∈ Vt, the procedure QUERY-RUNA is applied
exactly once. In other words, the procedure is called|t| times. In the body of the procedure, the case forΣ(2)

labels is computationally harder; the outer loop requires|δA| iterations, the inner loop forb1, b2 requires at most3n

iterations (for each ofn bits we have3 choices–the bit belongs to eitherb1, b2, or none of the two), and inside the
loop, one·∪ operation and two∗ operations are required. Note that the result of those set operations can be as large as
O(|t|n) in the worst case. As long as we represent such sets as a concrete collection of tuples, the operation∗ need
to enumerate all its output elements. Hence it takes at leastO(|t|n) time. Altogether, the total time complexity is still
high:O(3n|δA||t|n+1).

One approach for reducing the complexity is to do some preprocessing before running the algorithm, as proposed
by Flum, Frick, and Grohe [9]. Their algorithm consists of 3-passes over the input tree; the first two passes detect,
for each node, whether or not each entryr[q, b] really needs to be computed. The last pass is essentially the same as
QUERY-RUNA, but skipping the computation for “unneeded” entriesr[q, b]. This optimization leads to the complex-
ity O(3n|δA|(|t|+ |a|)) where|a| is the size of the answer set. The complexity of this strategy with respect to the data
size seems optimal in some sense; if the size of the input is|t| and the size of the output is|a|, even just reading and
writing those data already takesO(|t|+ |a|) time, doesn’t it?

Yes, it is optimal–as long as you write down all the elements of the answer set as the output. In the next section,
to avoid the issue, we propose here to use acompressed representationof the answer set, whose size can be bounded
byO(|t|).

4. SRED: Set Representation by Expression Dags

In this section, we propose a novel data structure named SRED for representing the answer sets ofn-ary regular
queries. The size of SRED is always bounded by the input sizeO(|t|), regardless how large the actual set it represents
is. Just by using the data structure instead of normal sets in the QUERY-RUNA procedure, we obtain linear running
time with respect to|t|, as well as a compact representation of the answer set. We first give the formal definition
of SRED, then show how easily and efficiently it can be adapted to the QUERY-RUNA algorithm, and finally, show
several important set-operations can be directly applied to SRED.

4.1. Definition

The idea of our compact representation is quite simple. To represent a sets, we use a syntax treer of an expression
that evaluates tos. For example, letr1 andr2 be the root nodes of the syntax-tree representations of setss1 ands2
(we writes1 = Jr1K ands2 = Jr2K, respectively). Then we denote the sets1 ·∪ s2 by the treer = cup⟨r1, r2⟩. To
denote the setJr1K ·∪ (Jr2K ∗ Jr3K), we usecup⟨r1, star⟨r2, r3⟩⟩. Note that, by allowing sharing of subtrees (i.e., using
syntax-dags instead of syntax-trees, which allows a node likecup⟨r1, r1⟩), each operation can be executed in constant
time, because it is just a creation of one new node. Since the algorithm QUERY-RUNA carries out set operations at
mostO(3n|δA||t|) times, under this representation of sets, the running time of QUERY-RUNA is inO(3n|δA||t|), and
so is the size of the output dag representing the answer set.

Let us formally explain the syntax-dag-based representation, which we callSRED (Set Representation by Ex-
pression Dags). An answer set of ann-ary query over a treet is represented by a dag of the following BNF, for
β1 · · ·βn ∈ Bn \ {0 · · · 0}:

STβ1···βn ::= emp⟨⟩ | ne⟨NSTβ1···βn⟩
ST 0···0 ::= emp⟨⟩ | unit⟨⟩

NSTβ1···βn ::= cup⟨v,NSTβ1···βn ,NSTβ1···βn⟩ with v ∈ Vt

| star⟨v,NSTα1···αn ,NST γ1···γn⟩ with v ∈ Vt andαi ⊕ γi = βi

| sing⟨v, β1 · · ·βn⟩ with v ∈ Vt

6

EVAL (r)
1: if r ≡ emp⟨⟩ then
2: return ∅
3: else ifr ≡ unit⟨⟩ then
4: return {(⊥, · · · ,⊥)}
5: else ifr ≡ ne⟨r′⟩ then
6: return EVAL-NE(r′)

UNION-AT (v, r1, r2)
1: if r1 ≡ emp⟨⟩ then
2: return r2
3: else ifr2 ≡ emp⟨⟩ then
4: return r1
5: else ifr1 ≡ ne⟨r′1⟩ and r2 ≡ ne⟨r′2⟩ then
6: return ne⟨cup⟨v, r′1, r′2⟩⟩
SINGLETON-AT (v, β1 · · ·βn)
1: if β1 · · ·βn = 0 · · · 0 then
2: return unit⟨⟩
3: else
4: return ne⟨sing⟨v, β1 · · ·βn⟩⟩

EVAL-NE (r)
1: if r ≡ cup⟨v, r1, r2⟩ then
2: return EVAL-NE(r1) ·∪ EVAL-NE(r2)
3: else ifr ≡ star⟨v, r1, r2⟩ then
4: return EVAL-NE(r1) ∗ EVAL-NE(r2)
5: else ifr ≡ sing⟨v, b⟩ then
6: return singleton(v, b)

PRODUCT-AT(v, r1, r2)
1: if r1 ≡ emp⟨⟩ or r2 ≡ emp⟨⟩ then
2: return emp⟨⟩
3: else ifr1 ≡ unit⟨⟩ then
4: return r2
5: else ifr2 ≡ unit⟨⟩ then
6: return r1
7: else ifr1 ≡ ne⟨r′1⟩ and r2 ≡ ne⟨r′2⟩ then
8: return ne⟨star⟨v, r′1, r′2⟩⟩

Figure 3:Basic Operations on SRED

wherea ⊕ c = b if and only if a ̸= c and b = 1 or a = b = c = 0. Note that, for enabling fast navigation
as will be explained later, we record the nodev ∈ Vt at each operator. Also for efficiency, we specially treat the
empty set (represented byemp⟨⟩) and theunit set({(⊥, . . . ,⊥)}, represented byunit⟨⟩), so that they do not occur
at operand positions. For example,cup⟨v, emp⟨⟩, emp⟨⟩⟩ is ill-formed becauseemp⟨⟩ occurs as operands ofcup.
We call a node labeledemp, unit, or ne a set-node, and a node labeledcup, star, or sing a neset-node(ne stands
for non-empty). For a neset-noder ∈ NSTβ1···βn , we denote bydim(r) the number of1s in β1 · · ·βn. Note
that we havedim(sing⟨v, β1 · · ·βn⟩) ≥ 1, dim(cup⟨v, r1, r2⟩) = dim(r1) = dim(r2), anddim(star⟨v, r1, r2⟩) =
dim(r1) + dim(r2).

By avoidingemp⟨⟩ andunit⟨⟩ to occur at non-root position, we can evaluate the syntax-dag by a straightforward
recursion shown in Figure3, in a time complexity proportional to the size of the answer set.

Lemma 3. Assume the disjoint unions1 ·∪s2 can be computed in constant time and the products1∗s2 can be computed
in timeO(n|s1 ∗ s2|) for s1, s2 ̸= ∅. Then for a neset-noder, EVAL-NE(r) runs in timeO

(
(k+ 1)n|EVAL-NE(r)|

)
wherek = dim(r)− 1.

Proof. Without loss of generality, we assume the disjoint unions1 ·∪ s2 to take one unit computation step, product
s1 ∗ s2 to taken|s1 ∗ s2| steps, andsingleton(v, b) to taken steps. Under the assumption, we prove by induction that
the computation of EVAL-NE(r) takes at mostT (k, r) = 2((2k + 1)n|EVAL-NE(r)|)− 1 steps.

If r is a node labeledsing, we havek ≥ 0 and thusT (k, r) ≥ 2n− 1 ≥ n.
If r ≡ cup⟨v, r1, r2⟩, by induction hypothesis,s1 = EVAL-NE(r1) ands2 = EVAL-NE(r2) can be computed in

time T (k, r1) + T (k, r2) = 2((2k + 1)n|EVAL-NE(r)|) − 2 steps (note that|EVAL-NE(r)| = |EVAL-NE(r1)| +
|EVAL-NE(r2)|, because it is disjoint union). Adding one unit computation step for the·∪, the obtained computation
steps is equal toT (k, r) as desired.

If r ≡ star⟨v, r1, r2⟩, by induction hypothesis,s1 = EVAL-NE(r1) ands2 = EVAL-NE(r2) can be computed
in T (k1, r1) + T (k2, r2) steps for somek1 + k2 + 1 = k. Note that neithers1 nor s2 is empty, because return
values of EVAL-NE are built up only fromsingleton, ∗, and ·∪. Thus, their sizes|s1|, |s2| are less than or equal to

7

EVAL-NE-1BY1 (r, callback)
1: if r ≡ cup⟨v, r1, r2⟩ then
2: EVAL-NE-1BY1(r1, callback)
3: EVAL-NE-1BY1(r2, callback)
4: else ifr ≡ star⟨v, r1, r2⟩ then
5: EVAL-NE-1BY1(r1, λp.EVAL-NE-1BY1(r2, λq.callback(p ∗ q)))
6: else ifr ≡ sing⟨v, b⟩ then
7: callback(singleton(v, b))

Figure 4:One-by-one generation of the element tuples of a SRED

|s1| · |s2| = |s1 ∗ s2| = |EVAL-NE(r)|. The total number of steps can be estimated as follows:

T (k1, r1) + T (k2, r2) + n|s1 ∗ s2| = 2((2k1 + 1)n|s1|)− 1 + 2((2k2 + 1)n|s2|)− 1 + n|s1 ∗ s2|
≤ 2((2k1 + 2k2 + 2)n|s1 ∗ s2|)− 2 + n|s1 ∗ s2|
= 2(2kn|s1 ∗ s2|)− 2 + n|s1 ∗ s2|
≤ 2((2k + 1)n|EVAL-NE(r)|)− 1 = T (k, r).

Theorem 4(EVALUATION). Under the same complexity assumption on·∪ and∗ as in Lemma3, for a set-noder, the
setEVAL(r) can be computed in timeO(n2|EVAL(r)|).

Proof. Immediately follows from Lemma3, because by definition ofdim, the numberk is at mostn− 1.

The complexity assumption is satisfied by, for instance, representing the concrete sets by a doubly-linked list of
tuples. Disjoint union can be implemented by the list concatenation, and the∗-product is implemented by a double-
loop over two operand sets. Purely functional catenable lists [13] might be an option, in particular when it is desirable
to avoid destructive updates. Another interesting implementation is shown in Figure4. Instead of constructing the
whole set of tuples, it generates each element tupleone-by-one; it takes a procedurecallback and calls it back for each
element tuple. It also has the same time complexity as the normal EVAL-NE.

The reader may notice that the evaluation EVAL(r) visits every node belowr at least once. Hence, from Theo-
rem4, we can conclude that the number of nodes belowr is O(n2|EVAL(r)|). In fact, we are able to give a tighter
upper-bound.

Theorem 5(OUT-SIZE-BOUND). For a set-noder, the number of nodes of a dag rooted atr is at most2n|EVAL(r)|.

Proof. Proof is by induction on structure of a neset-noder, showing that the procedure EVAL-NE is called at most
S(k, r) = 2(k + 1)|s| − 1 times during the computation ofs = EVAL-NE(r), wherek = dim(r) − 1. If this is
proved, the desired bound2n|EVAL(r)| immediately follows from the factk ≤ n− 1.

If r is a node labeledsing, the number of procedure calls is1, which is bounded byS(k, r) ≥ S(0, r) = 1. If
r ≡ cup⟨v, r1, r2⟩, the number of procedure calls isS(k, r1)+S(k, r2)+1 = 2(k+1)|EVAL-NE(r)|−2+1 = S(k, r).
If r ≡ star⟨v, r1, r2⟩, the number of procedure calls isS(k1, r1) + S(k2, r2) + 1 for somek1 + k2 + 1 = k. Using
the fact that|EVAL-NE(r1)| and|EVAL-NE(r2)| is no more than|EVAL-NE(r)|, this is bounded byS(k, r).

Note that this is the worst case estimation. In many cases, particularly when|EVAL(r)| is large compared to the
original input tree of the query, the number of nodes is much smaller than the bound as will be shown in the next
subsection. What we can tell from Theorem5 is that,even in the worst case, we are not losing much. Since it is a set
of n-tuples, Representation of the same set in an uncompressed form at least requiresn|EVAL(r)| space, which only
differs by a constant-factor from ours.

8

4.2. N-ary Query Algorithm Using SRED

The basic three operations used in the algorithm QUERY-RUNA are defined on SRED as in Figure3. Note that,
to avoidemp⟨⟩ andunit⟨⟩ to occuring in operand positions, we deal with the nodes specially. For example, since
∅ ∪ s = s for any sets, when either one of the operands of the UNION-AT operation is anemp⟨⟩ node, it returns
the other operand rather than constructing a newcup node. The correctness of those short-cuts are based on easy
set-theoretic equations, and summarized in the following two lemmas.

Lemma 6. The following four properties hold.

1. EVAL(emp⟨⟩) = ∅,
2. EVAL(SINGLETON-AT(v, b)) = singleton(v, b),
3. EVAL(UNION-AT(v, r1, r2)) = EVAL(r1) ·∪ EVAL(r2), and
4. EVAL(PRODUCT-AT(v, r1, r2)) = EVAL(r1) ∗ EVAL(r2).

Proof. The property 1 and 2 hold by the definition of EVAL. The property 3 follows from∅ ·∪ s = s ·∪ ∅ = s. Note
that in the implementation of UNION-AT we have not explicitly considered the case whenr1 or r2 is unit⟨⟩, because
it is covered by theemp⟨⟩ cases; disjointness implies thatunit⟨⟩ can be added only toemp⟨⟩. The property 4 is from
the equations∅ ∗ s = s ∗ ∅ = ∅ and{(⊥, . . . ,⊥)} ∗ s = s ∗ {(⊥, . . . ,⊥)} = s.

Lemma 7. Let S-QUERY-RUNA be a procedure obtained by replacing (1)∅ in the procedureQUERY-RUNA
with emp⟨⟩, (2) x ·∪ y with UNION-AT(v, x, y), (3) x ∗ y with PRODUCT-AT(v, x, y), and (4) singleton(v, b)
with SINGLETON-AT(v, b). Then,EVAL(S-QUERY-RUNA(t)[q, b]) = QUERY-RUNA(t)[q, b] for any t ∈ TΣA ,
q ∈ QA, andb ∈ Bn.

Proof. Clear from Lemma6, by induction on the structure ofr.

Now, we have the following two main theorems of this paper: the answer set of ann-ary regular query can
efficiently be computed as a SRED in linear time with respect to the size of the input, and it is also compact; its size
is linear, no matter how large the actual answer set is.

Theorem 8(QUERYING). For anyn-ary regular queryψL(A) and a treet, we can compute a SREDr that represents
the answer set (i.e.,EVAL(r) = ψL(A)(t)) in timeO(3n|δA||t|).

Proof. Let r′ = S-QUERY-RUNA(t). We can compute the desired SREDr by combining allr′[q, 1 · · · 1]’s with q ∈
FA by UNION-AT. From Theorems2 and7, this satisfies the equation EVAL(r) = ψL(A)(t) (here, representing the
∪ operation in Theorem2 by UNION-AT is justified because it is indeed a disjoint union, due to the premise thatA is
deterministic). The complexity analysis goes similar to the case of QUERY-RUNA. The procedure S-QUERY-RUNA
is applied once for each node int (that is, the procedure is invoked at most|t| times), and at each node, the innermost
loop body (line 10) is executed at most3n|δA| times. Different from the case of QUERY-RUNA, this time, set
operations UNION-AT and PRODUCT-AT in the loop body run in constant time. Hence, the total time complexity of
S-QUERY-RUNA isO(3n|δA||t|). The last union-phase requires at most|FA| − 1 execution of UNION-AT, whose
time consumption can asymptotically be ignored.

Theorem 9(IN-SIZE-BOUND). The number of nodes of the SREDr in Theorem8 is at most4 · 3n|δA||t|+ |FA|− 1.

Proof. Clear from the proof of Theorem8 (note that in each loop body, up to 4 nodes are created).

Before developing further algorithms on SRED, it is worth remarking here that Theorem8 combined with Theo-
rem4 can be used to derive the “optimal” data complexity for regular queries.

Corollary 10 (It follows also from Corollary 4.5 of [9]). The time complexity ofn-ary regular query with respect to
the data size isO(|t|+ |a|), where|t| is the size of the input node, and|a| is the size of the output answer set.

9

PROJ(i, r)
1: if r ≡ emp⟨⟩ then
2: return ∅
3: else ifr ≡ ne⟨r′⟩ then
4: return PROJ-NE(i, r′)

SEL (i, u, r)
1: if r ≡ emp⟨⟩ then
2: return emp⟨⟩
3: else ifr ≡ ne⟨r′⟩ then
4: return SEL-NE(i, u, r′)

PROJ-NE(i, r)
1: if r ≡ cup⟨v, r1, r2⟩ then
2: return PROJ-NE(i, r1) ∪ PROJ-NE(i, r2)
3: else ifr ≡ star⟨v, r1, r2⟩ (with r1 ∈ NSTβ1···βn) then
4: if βi = 1 then return PROJ-NE(i, r1) else return PROJ-NE(i, r2)
5: else ifr ≡ sing⟨v, β1 · · ·βn⟩ then
6: return {v}
SEL-NE(i, u, r)
1: if r ≡ cup⟨v, r1, r2⟩ and v ≤ u then
2: return UNION-AT(v, SEL-NE(i, u, r1), SEL-NE(i, u, r2))
3: else ifr ≡ star⟨v, r1, r2⟩ (with r1 ∈ NSTβ1···βn) and v ≤ u then
4: if βi = 1 then return PRODUCT-AT(v, SEL-NE(i, u, r1), r2)
5: else return PRODUCT-AT(v, r1, SEL-NE(i, u, r2))
6: else ifr ≡ sing⟨v, β1 · · ·βn⟩ and v = u then
7: return SINGLETON-AT(v, β1 · · ·βi−1βi+1 · · ·βn)
8: else return emp⟨⟩

Figure 5:Projection and selection on SRED

This way of using SRED just as an intermediate structure can be regarded as a different presentation of essentially
the same algorithm as that of [9]. As mentioned before, in [9], the complexity was achieved by running two pre-
processing phases that determine whether each entryr[q, b] (in their notation,Sat t,q) at each node contributes to the
final query answer, and skipping the computation of the unneeded part. Two cases are considered to be unneeded: the
case that we can never reach states inFA at the root node starting from the stateq, and the case that the setr[q, b] is
taken a product with the empty set afterward in the computation. In our algorithm, the former case is dealt with by
splitting the construction of a SRED structure and the evaluation of it; the construction has low complexity, and the
evaluation is only done on the states that reachFA states. The latter case is detected by the special treatment ofemp⟨⟩
node in the PRODUCT-AT procedure; a SRED that is taken product with anemp⟨⟩ set is discarded and thus is never
evaluated. Despite the similarity, we believe that our presentation is much simpler and easier to understand. In our
algorithm, structure of the first naı̈ve algorithm QUERY-RUNA is kept unchanged, and only just a few set-operations
are replaced with (almost trivially correct) SRED-based operations in Figure3.

4.3. Direct Manipulation of SRED

SRED is not only useful as an intermediate data structure for generating the concrete result of answer tuples. In
fact, it allows manipulation of the represented set directly on SRED, without evaluation. Here, we give an imple-
mentation of two important operations on SRED, namely,PROJECTIONandSELECTION. For a sets of n-tuples and
1 ≤ i ≤ n, PROJECTIONs@i = {vi | (v1, . . . , vn) ∈ s} is the set ofi-th coordinates ofs. Given an element u,
SELECTIONs[i:u] = {(v1, . . . , vi−1, vi+1, . . . , vn) | (v1, . . . , vi−1, u, vi+1, . . . , vn)} is the set of tuples ins such that
the i-th coordinate isu. As an example of a use-case of the two operations, consider the following scenario: first
we applyPROJECTION@1 to an answer set, sort the result in some preferable order, and with each elementu of the
projected set, applySELECTION [1:u] to get the remaining coordinates. In this way, we can enumerate the answers of
queries in a user-specified order on the first coordinate, rather than in the default order ofEVALUATION procedure.

On SRED representation of the answer sets, those two operations can be carried out in time proportional to the
heightof the input tree. That is, we do not need to traverse the whole structure of SRED, nor to re-traverse the original
input tree. Figure5 is the implementation, which is straightforwardly obtained from the distributivity of projection
and selection over disjoint union, etc.

Theorem 11(PROJECTION). By using memoization, the procedurePROJ(i, r) computes the setEVAL(r)@i in time
O(min(m, 3nh|δA||EVAL(r)@i|)) whereh is the height of the original input treet, andm is the number of nodes of
r.

10

SIZE (r)
1: if r ≡ emp⟨⟩ then
2: return 0
3: else ifr ≡ ne⟨r′⟩ then
4: return SIZE-NE(r′)

SIZE-NE(r)
1: if r ≡ cup⟨v, r1, r2⟩ then
2: return SIZE-NE(r1) + SIZE-NE(r2)
3: else ifr ≡ star⟨v, r1, r2⟩ then
4: return SIZE-NE(r1) × SIZE-NE(r2)
5: else ifr ≡ sing⟨v, β1 · · ·βn⟩ then
6: return 1

Figure 6:Computing the size of the set represented by a SRED

Proof. Correctness immediately follows from the following set-theoretic properties of projection:∅@i = ∅, (s1 ·∪
s2)@i = (s1)@i ∪ (s2)@i, (s1 ∗ s2)@i = (s1)@i if the i-th coordinates ofs1 is non-⊥ and (s1 ∗ s2)@i = (s2)@i

otherwise, and{(u1, . . . , un)}@i = {ui} for ui ̸= ⊥.
For the complexity, we assume the procedure PROJ-NE to be memoized, i.e., if it is applied to the same arguments

second time, it immediately returns the previous result in constant time. We can implement such memoization by
using a hash table. Then the body of the procedure PROJ-NE is executed at most once per each node ofr. Actually,
the procedure PROJ-NE is applied only to the nodes inNSTβ1···βn with βi = 1. The number of such nodes is at
most4 · 3n|δA|h|EVAL(r)@i|, because to haveβi = 1, it must have a descendant node of the formsing⟨v, · · ·⟩ with
v ∈ EVAL(r)@i. Since such a SRED node is created only at the ancestor nodes ofv in the original input tree (whose
number is at mosth|EVAL(r)@i|) and at each of such ancestors at most4 · 3n|δA| SRED nodes are created, we obtain
the bound on the number of the nodes. By using list-concatenation for representing set-union2, the body of PROJ-NE
can be executed in constant time. Hence, we obtain the desired complexity.

Theorem 12(SELECTION). By using memoization, the procedureSEL(i, u, r) computes the SRED representation of
the setEVAL(r)[i:u] in timeO(min(m, 3nh|δA|)) wherem is the number of nodes ofr.

Proof. Correctness immediately follows from the following set-theoretic properties of selection:∅[i:u] = ∅, (s1 ·∪
s2)[i:u] = (s1)[i:u] ·∪ (s2)[i:u], (s1 ∗ s2)[i:u] = (s1)[i:u] ∗ s2 if the i-th coordinates ofs1 is non-⊥ and(s1 ∗ s2)[i:u] =
s1 ∗ (s2)[i:u] otherwise, and{(u1, . . . , un)}[i:u] = {(u1, . . . , ui−1, ui+1, . . . , un)} for ui = u. The side condition
v ≤ u in lines 1 and 3 is justified by Lemma1; if the comparison does not hold, EVAL-NE(r) cannot containu.

For the complexity, memoization ensures that the procedure SEL-NE is called at most once per each node ofr.
Since the testv ≤ u succeeds only at the node constructed at an ancestor (in the treet) of u, the procedure SEL-NE
is executed only on the nodes constructed at an ancestor ofu, or their direct child. Note that the number of the
ancestor nodes in the input tree is at mosth, and on each of such nodes at most4 · 3n|δA| SRED-node is created. By,
multiplying them, we obtain the desired complexity.

Corollary 13 (MEMBERSHIP). Given a SREDr and a tuple(u1, . . . , un) of nodes, we can test whether(u1, . . . , un)
is in EVAL(r) or not in timeO(nmin(m, 3nh|δA|)).

Proof. RepeatSELECTIONn times.

Another interesting operation that can easily be executed on SRED without evaluation is, counting of the size of
the represented set.

Theorem 14 (SIZE). By using memoization, given a SREDr, the size of the represented set|EVAL(r)| can be
computed in timeO(m) wherem is the number of nodes ofr.

Proof. Figure 6 shows the implementation. By memoization, the procedure SIZE-NE is calledm times, and the
body of the procedure runs in constant time. Correctness follows from the following facts:|s1 ·∪ s2| = |s1| + |s2|,
|s1 ∗ s2| = |s1| × |s2|, and|{(u1, . . . , un)}| = 1.

2Precisely speaking, since it is not adisjoint union this time, list-concatenation based implementation may cause duplication. It, however, can
be removed by a linear time ‘uniq’ algorithm.

11

Note that, the procedure SIZE-NE is computing the size of the represented set for all nodes inr. By using the size
information, the one-by-one enumeration procedure shown in Figure4 is improved to alog-delayenumerator.

Corollary 15 (LOG-DELAY-ENUM). For a SREDr, we can enumerate the elements ofEVAL(r) in log-delay after
O(m) time preprocessing. That is, in the enumeration process, the time required to output adjacent two elements are
O(log2 |EVAL(r)|) for any adjacent pairs, and also the first element is generated inO(log2 |EVAL(r)|) time.

Proof. By using the size information obtained by SIZE-NE, without loss of generality we can assume|EVAL-NE(r1)|
≤ |EVAL-NE(r2)| in line 1 to 3 of the EVAL-NE-1BY1 procedure, (otherwise swapr1 andr2, which only changes
the order but not the enumerated set). Note that this implies2 · |EVAL-NE(r1)| ≤ |EVAL-NE(r)|.

Then, we can show that during the computation of EVAL-NE-1BY1(r, f), we enter the procedure EVAL-NE-1BY1
at mostlog2(|EVAL-NE(r)|) + k + 1 times between any two successive calls forf (and between the beginning of
the computation and the first call tof), wherek = dim(r) − 1. The same estimationlog2(|EVAL-NE(r)|) + k + 1
applies also to the number of times we leave the procedure between two successive calls forf (and between the last
call to f and the end of the computation, under the assumption that tail-calls are optimized away). This proves the
corollary.

The proof of the above statement is by induction on structure ofr. Whenr ≡ sing⟨v, β1, . . . , βn⟩, only one
call to f is made and between the call and the start of the computation of EVAL-NE-1BY1(r, f), exactly one call to
EVAL-NE-1BY1 is made. Sincelog2(|EVAL-NE(r)|) + k + 1 ≥ 1, we have proved the inductive statement for this
case. Whenr ≡ cup⟨v, r1, r2⟩, interval of two successive calls tof is at mostmax(log2(|EVAL-NE(r1)|) + k +
1, log2(|EVAL-NE(r2)|)+ k+1) ≤ log2(|EVAL-NE(r)|)+ k+1 by induction hypothesis. The delay to the first call
to f is 1 + log2(|EVAL-NE(r1)|) + k + 1, which is less than or equal tolog2(|EVAL-NE(r)|) + k + 1, because of
our assumption on the size ofr1. Between the last call tof and the end of the computation, the number of times we
leave the procedure can be made at mostlog2(|EVAL-NE(r2)|) + k + 1 ≤ log2(|EVAL-NE(r)|) + k + 1; since the
second call to EVAL-NE-1BY1 is a tail-call, return from the call can directly leave the whole computation3. When
r ≡ star⟨v, r1, r2⟩, the delay is at most1 + (log2(|EVAL-NE(r1)|) + k1 + 1) + (log2(|EVAL-NE(r2)|) + k2 + 1) for
some1 + k1 + k2 = k. Since we have(log2(|EVAL-NE(r1)|) + log2(|EVAL-NE(r2)|)) = log2(|EVAL-NE(r)|), the
induction statement is now proved.

4.4. Generalizations to Unranked Trees

So far, we have considered only binary trees. In many applications, however, we are interested inunrankedtrees
with varying number of child nodes. For example, in XML trees [14] such as XHTML documents, the number of
children may not be two, or even, may differ even between two nodes with the same label (e.g., an (ordered
list) node can have have an arbitrary number of (list item) child nodes).

To deal with unranked trees, we encode such trees to binary trees. A widely used encoding isfc-ns encoding. In
a binary tree obtained as the fc-ns encoding of an unranked tree, the first child of each node is mapped to thefirst
child of the corresponding node in the original unranked tree, and the second child of each node is mapped to the
next siblingin the unranked tree. It is a folklore result that the encoding preserves the regularity of queries, i.e., any
regular query for unranked trees can be converted to a regular query on the encoded trees. Hence, by first encoding the
unranked input trees and the queries to the binary-tree form and then running S-QUERY-RUNA, we can compute the
linear-size representation of the answer sets of regular queries. One problem of fc-ns encoding is the time complexity
of operations on SRED that depends on the factorh, the height of the tree. Suppose an original unranked tree has small
heighth0 and nodes with large numberw0(≃ |t|) of children (which is often the case for most XML documents).
The problem is that the height of the fc-ns encoded tree isO(h0w0). To deal with such trees, we recommend using
another encoding, namely, thebb encoding, to reduce the complexity toO(h0 logw0). In bb encoding, the list of
children of each node is encoded to abalanced binary treewhose left-to-right sequence of leaf nodes corresponds to
the child sequence in the original tree. Such an encoding also preserves regularity, because the ‘first-child’ and the
‘next-sibling’ relations remain regular. Moreover, since the height of a balanced binary tree is in the logarithmic order
of the number of the leaves, the height of the bb-encoded tree reduces toO(h0 log |t|).

3Such tail-call optimization is performed in almost all practical compilers for popular programming languages. Even if it does not, the tail-
recursion can easily be rewritten to an iteration by while-loop manually.

12

5. Application

SRED is developed for the XML transformation language MTran [15]. Let us illustrate the benefits of SRED by
the following pseudo code for XML translation:

{gather x where x:<person> do
<row>

<col> {gather y where x//<name>/ y do y}</col>
{gather z where z:<person> & document-order(z, x) do

<col> · · ·</col> }
</row> }

The program takes a document containing a list of<person> elements and generates some triangular matrix ta-
ble. The first query “x:<person> ” lists up all the<person> elements, and for each of them, the second query
“x//<name>/ y” selects a descendanty of x labeled<name> (for simplicity, we assume that suchy uniquely ex-
ists). If we really run for eachx the second query, which takes in generalO(|t|) time where|t| is the size of the tree,
total running time of the query becomes quadratic, because there may be linearly many<person> nodes. Rather, as
pointed out in [16], it is better to regard the second query as abinary queryfor selecting pairs(x, y). By using SRED,
the answer set of such a binary query can be computed in linear time. Furthermore, by theSELECTION operation
followed by theEVALUATION operation, for eachx we can obtain the correspondingy in timeO(h0 log |t|). Total
running time reduces toO(h0|t| log |t|). So far, we could have used the FFG algorithm [9] (or equivalently, query
with SRED directly followed byEVALUATION) for the same purpose, because its running time is linear under the
assumption thaty uniquely exists for eachx. Consider, then, the third query that selects all<person> elementsz
precedingx in the document order (preorder). Similarly, we run the query as a binary query for selecting pairs(x, z).
In this case, the size of the answer set is quadratic. If we use the FFG algorithm, we needO(|t|2) working space
for carrying out the binary-query based approach. While, with SRED, it requires onlyO(|t|) working space. This
makes feasible to run the transformation over larger inputs, which could not be done without SRED due to memory
shortage.

6. Conclusion and Future Work

The paper introduced a data structure named SRED (Set Representation by Expression Dags), which allows rep-
resenting answer sets of regular tree queries compactly. Here is the summary of its performance for then-ary query
defined by an automaton with transition functionδA, with an input treet and an output seta:

QUERYING EVALUATION Size (number of nodes) of SRED(= m)
O(3n|δA||t|) O(n2|a|) at mostmin(2n|a|, 4·3n|δA||t|)

Regardless how large the output answer set is, the time for computing its SRED representation is independent of it;
it is always linear with the size of the input. Evaluation (or decompression) of SRED only depends on the size of
the answer set and is independent from the input size. The size of the SRED representation stays at the minimum of
them. Thus, for a large answer set (e.g.,|a| ≃ |t|n), SRED works as a concise representation of the set, and even for
a small (|a| ≪ |t|) answer set that could not benefit from the compression, it works no worse than non-compressed
representations. Furthermore, SRED allow several kinds of direct manipulations on the represented sets, without
decompression:

PROJECTION SELECTION SIZE

O(min(m, 3nh|δA||p|)) O(min(m, 3nh|δA|)) O(m)
(|p| is the size of the projected set)

In the paper, we have used thetotal deterministictree automaton as a representative of regular queries. One
possible direction for future work is to extend the SRED representation to support other query formalisms directly,
rather than through a conversion to a deterministic automaton. In fact, the algorithms given in this paper works without
any change forpartial deterministic automata, and, as long as it isunambiguous, for non-deterministic ones. It seems
an interesting question whether there is a possibility to support arbitrary non-deterministic tree automata.

13

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. This work was partly supported by
the Japan Society for the Promotion of Science.

References

[1] H. Hosoya, B. C. Pierce, Regular expression pattern matching for XML, Journal of Functional Programming 13 (2003) 961–1004.doi:
10.1017/S0956796802004410 .

[2] J. W. Thatcher, J. B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic, Mathematical
Systems Theory 2 (1968) 57–811.doi:10.1007/BF01691346 .

[3] D. Niwinski, Fixed points vs. infinite generation, in: Logic in Computer Science (LICS), 1988, pp. 402–409.doi:10.1109/LICS.
1988.5137 .

[4] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing XPath queries, ACM Transactions on Database Systems 30 (2005)
444–491.doi:10.1145/1071610.1071614 .

[5] G. Gottlob, C. Koch, Monadic datalog and the expressive power of languages for Web information extraction, Journal of the ACM 51 (2004)
74–113.doi:10.1145/962446.962450 .

[6] F. Neven, J. V. D. Bussche, Expressiveness of structured document query languages based on attribute grammars, Journal of the ACM 49
(2002) 56–100.doi:10.1145/505241.505245 .

[7] H. Meuss, K. U. Schulz, F. Bry, Towards aggregated answers for semistructured data, in: International Conference on Database Theory
(ICDT), 2001, pp. 346–360.doi:10.1007/3-540-44503-X 22 .

[8] E. Filiot, S. Tison, Regularn-ary queries in trees and variable independence, in: International Conference on Theoretical Computer Science
(IFIP TCS), 2008, pp. 429–443.doi:10.1007/978-0-387-09680-3 29 .

[9] J. Flum, M. Frick, M. Grohe, Query evaluation via tree-decompositions, Journal of the ACM 49 (2002) 716–752.doi:10.1145/602220.
602222 .

[10] G. Bagan, MSO queries on tree decomposable structures are computable with linear delay, in: Computer Science Logic (CSL), 2006, pp.
167–181.doi:10.1007/11874683 11 .

[11] B. Courcelle, Linear delay enumeration and monadic second-order logic, Discrete Applied Mathematics 157 (2009) 2675–2700.doi:
10.1016/j.dam.2008.08.021 .

[12] P. F. Dietz, Maintaining order in a linked list, in: ACM Symposium on Theory of Computing (STOC), 1982, pp. 122–127.doi:10.1145/
800070.802184 .

[13] C. Okasaki, Amortization, lazy evaluation, and persistence: Lists with catenation via lazy linking, in: Foundations of Computer Science
(FOCS), 1995, pp. 646–654.doi:10.1109/SFCS.1995.492666 .

[14] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, Extensible markup language (XMLTM), http://www.w3.org/XML/ (2000).
[15] K. Inaba, H. Hosoya, XML transformation language based on monadic second order logic, in: Programming Language Technologies for

XML (PLAN-X), 2007, pp. 49–60.
[16] A. Berlea, H. Seidl, Binary queries for document trees, Nordic Journal of Computing 11 (2004) 41–71.

14

http://dx.doi.org/10.1017/S0956796802004410
http://dx.doi.org/10.1017/S0956796802004410
http://dx.doi.org/10.1007/BF01691346
http://dx.doi.org/10.1109/LICS.1988.5137
http://dx.doi.org/10.1109/LICS.1988.5137
http://dx.doi.org/10.1145/1071610.1071614
http://dx.doi.org/10.1145/962446.962450
http://dx.doi.org/10.1145/505241.505245
http://dx.doi.org/10.1007/3-540-44503-X_22
http://dx.doi.org/10.1007/978-0-387-09680-3_29
http://dx.doi.org/10.1145/602220.602222
http://dx.doi.org/10.1145/602220.602222
http://dx.doi.org/10.1007/11874683_11
http://dx.doi.org/10.1016/j.dam.2008.08.021
http://dx.doi.org/10.1016/j.dam.2008.08.021
http://dx.doi.org/10.1145/800070.802184
http://dx.doi.org/10.1145/800070.802184
http://dx.doi.org/10.1109/SFCS.1995.492666
http://www.w3.org/XML/

	Introduction
	Preliminaries
	N-ary Regular Tree Queries
	SRED: Set Representation by Expression Dags
	Definition
	N-ary Query Algorithm Using SRED
	Direct Manipulation of SRED
	Generalizations to Unranked Trees

	Application
	Conclusion and Future Work

