
Stack Macro Tree Trasnducers

Kazuhiro Inaba

May 8, 2013

1 StackMTT

A stack macro tree transducer [EV85] is similar to a macro tree transducer, but
its rules are in the following form.

F (σ x1 . . . xn) y1 . . . ym ys → rhs

where

rhs ::= yi (1 ≤ i ≤ m)

| δ rhs . . . rhs

| G xi rhs . . . rhs ys (1 ≤ i ≤ n).

Intuitively, the rule pops m (can be 0) trees from the stack, output them at yi,
and pushes some (can be 0) values when it inducively goes down to a subtree.
The trailing parameter ys denotes the “untouched” part of the stack.

2 Towards Decomposing Unsafe HTTs

2.1 Overview

Claim 2.1. n−HTT ⊆ (StackMTT)n.

The original purpose of this note is to show the above claim, where n−HTT is
the class of unsafe [KNU01, BO09] order-n tree transducers and the superscript
n means the n-fold composition. This is the easy consequence of the following
claim, which turned out to be hard to prove for n > 2 case. Thus, this note is
currently devoted to show the original idea that still goes well with n ≤ 2 case,
and records what is problematic in more higher-order cases.

Claim 2.2 (Main Lemma). n−HTT ⊆ (n− 1)−HTT ; StackMTT.

More specifically, it claims that an n−HTT can be decomposed to an (n −
1)−HTT followed by a particular translation called Eval, which performs first-
order substitution symbolically represented as a tree. For people who are fa-
miliar with tree transducers, this can be thought as a generalization of the

1



TOP; YIELD decomposition of macro tree transducers (the generalization is needed
to handle unsafe terms). For those from functional programming, this is a kind
of defunctionalization, limited to only first order functions (the limitation is
need to perform the evaluation with a single-input machine).

2.2 Eval

EvalX,Y is a stack macro tree transducer running on input trees over the alpha-
bet ∆ ∪ {s, z,@} ∪ {KkDd | 0 ≤ k ≤ X, 0 ≤ d ≤ Y }. The set of rules of Eval is
as follows.

Eval (δ x1 . . . xn) ys → δ (Eval x1, ys) . . . (Eval xn, ys)

Eval (@ x1x2) ys → Eval x1 (Eval x2 ys) ys (push)

Eval (z) y1 ys → y1 (output-top)

Eval (s x1) y1 ys → Eval x1 ys (pop)

Eval (KkDd x1) y1 . . . yk yk+1 . . . yk+d ys → Eval x1 y1 . . . yk ys (drop slice)

Basically, it is meant to interprent a symbolic substitution tree whose variables
are represented by de-Bruijn index in unary notation (e.g., 4 = ssssz). For
example, a variable 4 will be substitued by the right child of 4th nearest binding
node @. The tricky thing is the KkDd symbols which should be read (keep k and
drop d). It is used to cleverly manage variable environments complicated by
higher-order unsafe terms.

As a shorthand we will use the notation ⟨n⟩ =

n︷ ︸︸ ︷
s(s(· · · (s z) · · · )) for unary

numerals.

2.3 Order Reduction

Types in unsafe HTT are represented by the following expression.

t ::= o | t → t

where o denotes the order-0 type, i.e., output trees. The order-1 arity of a type
t is:

ary1 (t) = p if t =

p︷ ︸︸ ︷
o → o → · · · → o → o

ary1 (t) = 0 otherwise.

Note, that for the particular purpose of this section, we care the arity only for
order-1 types. For the higher-order types, ary1 is always defined to be zero.

Now, each rule of a n−HTT

F v1 . . . va y0 . . . ym−1 → rhs

2



where y0 is the leftmost parameter such that all parameters to the right (in-
cluding y0 itself is order-0, is transformed to another rule of a (n− 1)−HTT.

F v1 . . . va → JrhsKm
by J · K, all order-1 entities in the right hand side is transformed to order-0 (i.e.,
trees). That effectively reduces the order of the whole transducer by 1. The
subscript m intuively means that “from this context, we have to pop m values
from the stack to reach the caller (of F ) environment.

Please also be noted that variables vi may still contain a variable whose
order was originally 0, because we are dealing with unsafe transformations.

JyiKk = ⟨k −m + i⟩ (order-0 trailing parameter)JyKk = K0Dk y (other order-0 parameters)JfKk = Kary1(f)Dk−ary1(f) f (order-1 parameter)JφKk = Dk φ (order ≥ 2 parameters)JδKk = δ ⟨0⟩ ⟨1⟩ . . . ⟨ary1(δ)⟩ (output symbol)JF Kk = F (nonterminals)

where Dk is an auxiary nonterminal that inserts K0Dk before applic Dk φ params =
K0Dk (v params). is this correct? no. Function application is coverted as a whole:

Je e′1 . . . e′p e1 . . . enKk = @ (@ (· · · (@ (Z) Je1Kk+n−1) · · · ) Jen−1Kk+1) JenKk
where Z = JeKk+n Je′1Kk+ary1(e′1)

· · · Je′pKk+ary1(e′p)

where ep is the last non-zero order argument.

Claim 2.3. By this construction, 2−HTT ⊆ 1−HTT; Eval.

Proof is by induction on the derivation steps in the 1−HTT to say there is
a exactly “corresponding” step in 2−HTT.

2.4 Counterexample in the order-3 case

S = T a

T x = D (B x) b

D p x = F (p (F x)) x # p :: (o->o)->o->o

F x y = c x y

B y f = f y # f :: o->o

this translates to

S = @ T a

T = @ (D (B 0)) b

D p = @ (@ F (!!!p!!! (@ F 1))) 0

F = c 0 1

B y f = @ f y

3



During the evaluation of p, we want to forget about the immediately outer
apprication and the parameter of D (two occurrences of xs) because what is
substituted to p comes from the outer environment (it is B 0 in T). On the
other hand, its argument, @ F 1 must be evaluated without popping. The 1

refers to the D’s paramter x.
In other words, we need to apply different number of pop operations to p and

its real arguments. *But*, even though we still know the number of necessary
pops for p and each argument, we have no way to express the pop counts in the
form of a single tree evaluatable by Eval.

2.5 Example in order-2 case.

This is a core of the U language written in an order-2 unsafe grammar [AdMO05].

D f x y z -> a (f y x) (D (D f x) z (F y) (F y))

This will become:

D f -> a (@ (@ (K2D3 f) 1+1) 0)

[D (D f x) z (F y) (F y))]_3

= a (@ (@ (K2D3 f) 1+1) 0)

(@ (@ (@ (D [D f x]_5 2+2) (F 1+1)) (F 1))

= a (@ (@ (K2D3 f) 1+1) 0)

(@ (@ (@ (D (@ (D [f]_5) 5-3+0) 2+2) (F 1+1)) (F 1))

= a (@ (@ (K2D3 f) 1+1) 0)

(@ (@ (@ (D (@ (D (K2D3 f) 5-3+0) 2+2) (F 1+1)) (F 1))

= a (@ (@ (K2D3 f) 2) 0)

(@ (@ (@ (D (@ (D (K2D3 f) 2) 4) (F 2)) (F 1))

2.6 Comparison to other models.

Panic automata, collapsible pushdown automata, or many other machine models
dealing with unsafe grammars, all has either a kind of thunks that points to code
fragments, or absolute pointers to refer some point in stack absolutely.

The direction presented in this note is to use, instead of thunks or absolute
links, relative pointers (like de-Bruijn index) to identify each variables environ-
ment. If it succeeds, it makes it possible to the Eval machine to operate more
locally and tractable. (Though I have no luck yet :)).

References

[AdMO05] K. Aehlig, J. G. de Miranda, and C. H. L. Ong. Safety is not a
restriction at level 2 for string languages. In Foundations of Soft-
ware Science and Computation Structures (FoSSaCS), pages 490–
504, 2005.

4



[BO09] William Blum and C.-H. Luke Ong. The safe lambda calculus. Log-
ical Methods in Computer Science (LMCS), 5:1–38, 2009.

[EV85] Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal
of Computer and System Sciences, 31:71–146, 1985.

[KNU01] Teodor Knapik, Damian Niwiński, and Pawe lUrzyczyn. Deciding
monadic theories of hyperalgebraic trees. In Typed Lambda Calculi
and Applications (TLCA), pages 253–267, 2001.

5


