Stack Macro Tree Trasnducers

Kazuhiro Inaba

May 8, 2013

1 StackMTT

A stack macro tree transducer [EV85] is similar to a macro tree transducer, but its rules are in the following form.

$$
F\left(\sigma x_{1} \ldots x_{n}\right) y_{1} \ldots y_{m} y s \rightarrow r h s
$$

where

$$
\begin{array}{rlr}
r h s::= & y_{i} & (1 \leq i \leq m) \\
& \mid \delta r h s \ldots \text { rhs } & \\
& \mid G x_{i} r h s \ldots \text { rhs ys } & (1 \leq i \leq n) .
\end{array}
$$

Intuitively, the rule pops m (can be 0) trees from the stack, output them at y_{i}, and pushes some (can be 0) values when it inducively goes down to a subtree. The trailing parameter ys denotes the "untouched" part of the stack.

2 Towards Decomposing Unsafe HTTs

2.1 Overview

Claim 2.1. $n-H T T \subseteq(S t a c k M T T){ }^{n}$.
The original purpose of this note is to show the above claim, where $n-H T T$ is the class of unsafe [KNU01, BO09] order- n tree transducers and the superscript ${ }^{n}$ means the n-fold composition. This is the easy consequence of the following claim, which turned out to be hard to prove for $n>2$ case. Thus, this note is currently devoted to show the original idea that still goes well with $n \leq 2$ case, and records what is problematic in more higher-order cases.

Claim 2.2 (Main Lemma). $n-H T T \subseteq(n-1)-$ HTT ; StackMTT.
More specifically, it claims that an $n-H T T$ can be decomposed to an $n-$ 1)-HTT followed by a particular translation called Eval, which performs firstorder substitution symbolically represented as a tree. For people who are familiar with tree transducers, this can be thought as a generalization of the

TOP; YIELD decomposition of macro tree transducers (the generalization is needed to handle unsafe terms). For those from functional programming, this is a kind of defunctionalization, limited to only first order functions (the limitation is need to perform the evaluation with a single-input machine).

2.2 Eval

Eval $_{X, Y}$ is a stack macro tree transducer running on input trees over the alphabet $\Delta \cup\{\mathbf{s}, \mathbf{z}, @\} \cup\left\{\mathrm{K}_{\mathrm{k}} \mathrm{D}_{\mathrm{d}} \mid 0 \leq k \leq X, 0 \leq d \leq Y\right\}$. The set of rules of Eval is as follows.

$$
\begin{align*}
\text { Eval }\left(\delta x_{1} \ldots x_{n}\right) y s & \rightarrow \delta\left(\text { Eval } x_{1}, y s\right) \ldots\left(\text { Eval } x_{n}, y s\right) \\
\text { Eval }\left(@ x_{1} x_{2}\right) y s & \rightarrow \text { Eval } x_{1}\left(\text { Eval } x_{2} y s\right) y s \tag{push}\\
\text { Eval }(\mathbf{z}) y_{1} y s & \rightarrow y_{1} \\
\text { Eval }\left(\mathrm{s} x_{1}\right) y_{1} y s & \rightarrow \text { Eval } x_{1} y s \\
\text { Eval }\left(\mathrm{K}_{\mathrm{k}} \mathrm{D}_{\mathrm{d}} x_{1}\right) y_{1} \ldots y_{k} y_{k+1} \ldots y_{k+d} y s & \rightarrow \text { Eval } x_{1} y_{1} \ldots y_{k} y s
\end{align*}
$$

(output-top)
(drop slice)

Basically, it is meant to interprent a symbolic substitution tree whose variables are represented by de-Bruijn index in unary notation (e.g., $4=\mathbf{s s s s z}$). For example, a variable 4 will be substitued by the right child of 4th nearest binding node @. The tricky thing is the $\mathrm{K}_{\mathrm{k}} \mathrm{D}_{\mathrm{d}}$ symbols which should be read (keep k and drop d). It is used to cleverly manage variable environments complicated by higher-order unsafe terms.

As a shorthand we will use the notation $\langle n\rangle=\overbrace{\mathrm{s}(\mathbf{s}(\cdots(\mathrm{s} z)}^{n} \cdots))$ for unary numerals.

2.3 Order Reduction

Types in unsafe HTT are represented by the following expression.

$$
t::=o \mid t \rightarrow t
$$

where o denotes the order-0 type, i.e., output trees. The order-1 arity of a type t is:

$$
\begin{array}{rr}
\operatorname{ary} 1(t) & =p \\
\operatorname{ary} 1(t) & =0
\end{array} \quad \text { if } t=\overbrace{o \rightarrow o \rightarrow \cdots \rightarrow o}^{p} \rightarrow o
$$

Note, that for the particular purpose of this section, we care the arity only for order-1 types. For the higher-order types, ary1 is always defined to be zero.

Now, each rule of a $n-H T T$

$$
F v_{1} \ldots v_{a} y_{0} \ldots y_{m-1} \rightarrow r h s
$$

where y_{0} is the leftmost parameter such that all parameters to the right (including y_{0} itself is order- 0 , is transformed to another rule of a $(n-1)-\mathrm{HTT}$.

$$
F v_{1} \ldots v_{a} \rightarrow \llbracket r h s \rrbracket_{m}
$$

by $\llbracket \rrbracket \rrbracket$, all order- 1 entities in the right hand side is transformed to order- 0 (i.e., trees). That effectively reduces the order of the whole transducer by 1 . The subscript ${ }_{m}$ intuively means that "from this context, we have to pop m values from the stack to reach the caller (of F) environment.

Please also be noted that variables v_{i} may still contain a variable whose order was originally 0 , because we are dealing with unsafe transformations.

$$
\begin{array}{rlr}
\llbracket y_{i} \rrbracket_{k} & =\langle k-m+i\rangle & \text { (order-0 trailing parameter) } \\
\llbracket y \rrbracket_{k} & =\mathrm{K}_{0} \mathrm{D}_{\mathrm{k}} y & \text { (other order-0 parameters) } \\
\llbracket f \rrbracket_{k} & \left.=\mathrm{K}_{\text {ary1 }} \mathrm{f}\right) \mathrm{D}_{\mathrm{k}-\operatorname{ary} 1(\mathrm{f})} f & \text { (order-1 parameter) } \\
\llbracket \varphi \rrbracket_{k} & =D_{k} \varphi & \text { (order } \geq 2 \text { parameters) } \\
\llbracket \delta \rrbracket_{k} & =\delta\langle 0\rangle\langle 1\rangle \ldots\langle\operatorname{ary} 1(\delta)\rangle & \text { (output symbol) } \\
\llbracket F \rrbracket_{k} & =F & \text { (nonterminals) }
\end{array}
$$

where D_{k} is an auxiary nonterminal that inserts $\mathrm{K}_{0} \mathrm{D}_{\mathrm{k}}$ before applic $D_{k} \varphi$ params $=$ $\mathrm{K}_{0} \mathrm{D}_{\mathrm{k}}(v$ params $)$. is this correct? no. Function application is coverted as a whole:

$$
\begin{aligned}
\llbracket e e_{1}^{\prime} \ldots e_{p}^{\prime} e_{1} \ldots e_{n} \rrbracket_{k} & =@\left(@\left(\cdots\left(@(Z) \llbracket e_{1} \rrbracket_{k+n-1}\right) \cdots\right) \llbracket e_{n-1} \rrbracket_{k+1}\right) \llbracket e_{n} \rrbracket_{k} \\
\text { where } Z & =\llbracket e \rrbracket_{k+n} \llbracket e_{1}^{\prime} \rrbracket_{k+\operatorname{ary} 1\left(e_{1}^{\prime}\right)} \cdots \llbracket e_{p}^{\prime} \rrbracket_{k+\operatorname{ary} 1\left(e_{p}^{\prime}\right)}
\end{aligned}
$$

where e_{p} is the last non-zero order argument.
Claim 2.3. By this construction, $2-\mathrm{HTT} \subseteq 1-\mathrm{HTT}$; Eval.
Proof is by induction on the derivation steps in the $1-$ HTT to say there is a exactly "corresponding" step in $2-$ HTT.

2.4 Counterexample in the order-3 case

$\mathrm{S}=\mathrm{T}$ a
$\mathrm{T} x=\mathrm{D}(\mathrm{B} x) \mathrm{b}$
D p x = F ($\mathrm{p}(\mathrm{F} x)$) x \# p :: (o->o)->o->o
F x y = c x y
$B y f=f y \quad \# f:: ~ o->0$
this translates to

```
S = @ T a
T = @ (D (B 0)) b
D p = @ (@ F (!!!p!!! (@ F 1))) 0
F = c 0 1
B y f = @ f y
```

During the evaluation of p , we want to forget about the immediately outer apprication and the parameter of D (two occurrences of $x s$) because what is substituted to p comes from the outer environment (it is B 0 in T). On the other hand, its argument, @ F 1 must be evaluated without popping. The 1 refers to the D's paramter x.

In other words, we need to apply different number of pop operations to p and its real arguments. *But*, even though we still know the number of necessary pops for p and each argument, we have no way to express the pop counts in the form of a single tree evaluatable by Eval.

2.5 Example in order-2 case.

This is a core of the U language written in an order-2 unsafe grammar [AdMO05].

```
D f x y z >> a (f y x) (D (D f x) z (F y) (F y))
```

This will become:

```
D f -> a (@ (@ (K2D3 f) 1+1) 0)
    [D (D f x) z (F y) (F y))]_3
    = a (@ (@ (K2D3 f) 1+1) 0)
    (@ (@ (@ (D [D f x]_5 2+2) (F 1+1)) (F 1))
    = a (@ (@ (K2D3 f) 1+1) 0)
    (@ (@ (@ (D (@ (D [f]_5) 5-3+0) 2+2) (F 1+1)) (F 1))
    = a (@ (@ (K2D3 f) 1+1) 0)
    (@ (@ (@ (D (@ (D (K2D3 f) 5-3+0) 2+2) (F 1+1)) (F 1))
    = a (@ (@ (K2D3 f) 2) 0)
    (@ (@ (@ (D (@ (D (K2D3 f) 2) 4) (F 2)) (F 1))
```


2.6 Comparison to other models.

Panic automata, collapsible pushdown automata, or many other machine models dealing with unsafe grammars, all has either a kind of thunks that points to code fragments, or absolute pointers to refer some point in stack absolutely.

The direction presented in this note is to use, instead of thunks or absolute links, relative pointers (like de-Bruijn index) to identify each variables environment. If it succeeds, it makes it possible to the Eval machine to operate more locally and tractable. (Though I have no luck yet :)).

References

[AdMO05] K. Aehlig, J. G. de Miranda, and C. H. L. Ong. Safety is not a restriction at level 2 for string languages. In Foundations of Software Science and Computation Structures (FoSSaCS), pages 490504, 2005.
[BO09] William Blum and C.-H. Luke Ong. The safe lambda calculus. Logical Methods in Computer Science (LMCS), 5:1-38, 2009.
[EV85] Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal of Computer and System Sciences, 31:71-146, 1985.
[KNU01] Teodor Knapik, Damian Niwiński, and PawełUrzyczyn. Deciding monadic theories of hyperalgebraic trees. In Typed Lambda Calculi and Applications (TLCA), pages 253-267, 2001.

