IRPALSI is not RE

(Introduction of the manuscript: Tetsuya Ishiu, "IRP is Strictly Larger Than MTT" <u>http://twitdoc.com/c/xrwhnm</u>)

presentation by Kazuhiro Inaba (NII, <u>kinaba@nii.ac.jp</u>) IPL-Group Seminar May 25, 2010

The Talk is about a Property on...

String/Tree Transformations

e.g.,

$$dup(s) = s ++ s$$

reverse([]) = [] reverse(x:xs)= reverse(xs)++[x]

and

Regular Languages

e.g.,

The Property IRP

Inverse Regularity Preserving A function f is IRP iff For any regular language L, the inv. img. f⁻¹(L) = {s | f(s) ∈ L} is regular

Example: "dup" and "reverse" Example:

Agenda

Why you should be interested in IRP? IRP-based typechecking

- Always-IRP computation models
- Q: "Do the models cover all IRP?"
 A: "No, IRP∩LSI is not RE."
 Proof Tech. 1: Clever diagonalization
 Proof Tech. 2: Slenderness of languages

Why IRP?

Typechecking f:: L_{IN} → L_{OUT} ? Verify that a transformation always generates valid outputs from valid inputs.

f	L _{IN}	L _{OUT}
XSLT Template for formating bookmarks	XBEL Schema	XHTML Schema
PHP Script	Arbitrary String	String not containing " <script></script>

Why IRP?

Typechecking $f :: L_{IN} \rightarrow L_{OUT}$? If f is IRP, we can check this by ...

f is type-correct $\Leftrightarrow f(L_{IN}) \subseteq L_{OUT}$ $\Leftrightarrow L_{IN} \subseteq f^{-1}(L_{OUT})$

(for experts: f is assumed to be deterministic)

FAQ: Why IRP?

ForwardRP also enables typechecking **FRP-based checking:** $f(L_{IN}) \subseteq L_{OUT}$ **IRP-based checking :** $L_{IN} \subseteq f^{-1}(L_{OUT})$

Reasons

IRP provides more useful <u>counter examples</u>.
Many functions <u>in practice tend to be IRP</u>, but not so for FRP. E.g., "dup".

IRP-Based Typechecking

Not all transformations are IRP

The trend is to define a *restricted*language whose programs are always IRP
and present sound & complete
typechecking for them
or use them as clearly defined targets for
approximate checking

Famous Computation Models of IRP Tree Transformations

(note: $X^* := \{ f1 \cdot f2 \cdot ... \cdot fn \mid n \in Nat, fi \in X \}$)

One Example: MTT

MTT = The class of functions on trees defined by (mutual) structural recursion + accumulating parameters

MTT* = Finite composition of MTTs

double(B, y_1) \rightarrow C(y_1 , y_1)

start($A(x_1)$)

double($A(x_1)$, y_1) \rightarrow double(x_1 , double(x_1 , y_1))

 \rightarrow double(x_1 , double(x_1 , E))

Example

Syntax

Question

Do they cover all IRP transformations?

$MTT^* = PTT^* = ATT^* = \dots = IRP?$ $\Box \subseteq is known$ $\Box \supseteq ?$

(Attribution: I've first heard this question from Sebastian Maneth, who heard it from Keisuke Nakano)

Answer: "No"

K. Inaba, PPL 2010 Short Presentation 2^n 2^n 2^n 2^n 2^n 2^n 2^n 2^n 3^n 3^n

But its growth is toooooooooo fast! Aren't there any "milder" counterexample?

New Question

MSOTT = (MTT*=PTT*=ATT*=...)∩LSI = IRP ∩ LSI ?

⊆ is known ⊇?

Answer: "No"

There exists a IRP∩LSI transformation that cannot be written in MSOTT

Main Theorem of This Talk

The class of IRP∩LSI transformations is not recursively enumerable. (There's no Turing machine that enumerates all of them)

THE PROOF

Overview

The class of IRP∩LSI transformations is not recursively enumerable. (There's no Turing machine that enumerates all of them)

Basic idea is

the Diagonalization (対角線論法)
"Give me a enumeration {g1, g2, g3, ...} of the class of functions. Then I will show you a function f not in the enumeration."

Diagonalization

(Assuming a fixed alphabet,) we can enumerate all string/trees: {t1, t2, t3, ...} Given enumeration {g1, g2, g3, ...} of the class

Ma construct f act		t1	t2	t3	t4	•••
f(ti) := arbitrary tree	g1	×				
except gi(ti)	g2		×			
Caution!	g3			×		
f may not be IRP nor LSI	g4				×	

Diagonalization

The class of IRP∩LSI transformations is not recursively enumerable. (There's no Turing machine that enumerates all of them)

What we really want is this:

"Give me a enumeration {g1, g2, g3, ...} of the IRP ∩ LSI functions. Then I will show you a function f *not* in the enumeration *but* in IRP∩LSI." which derives contradiction.

Diagonalization

We can enumerate all regular languages: {R1, R2, R3, ...} Given enumeration {g1, g2, g3, ...} of the class

We construct f so that:
 f(t) ≠ gi(t) for some
 t ← {R1,R2,...,Ri}
 f⁻¹(Ri) = almost Ri

	R1	R2	R3	R4	•••
g1	×				
g2		×			
g3			×		
g4				×	
•••					•••

Preparation

Known facts on Regular Languages
All finite sets are regular
They are closed under boolean ops.
If R1, R2 ∈ REG then
R1 ∩ R2 ∈ REG
R1 ∪ R2 ∈ REG
~R1 ∈ REG

"Slenderness" is decidable

[Paun&Salomaa 1993] "Language-Theoretic Problems Arising from Richelieu Cryptosystems", TCS(116), pp.339-357

Preparation: Slenderness

A set L of string is slender iff $\exists c. \forall n. \#\{s \mid s \in L, len(s)=n\} \leq c$ {1, 11, 111, 1111, ...} is slender {0, 1, 10, 11, 100, 101, ...} is not slender L1,L2 is slender \rightarrow L1UL2 is slender L1,L2 is co-slender \rightarrow L1 \cap L2 is co-slender Co-slender \Leftrightarrow complement is slender Not co-slender \Leftrightarrow a plenty of supply of non-members

Main Lemma

Let $\{g_1, g_2, ...\}$ be an enumeration of total functions. Let $\{R_1, R_2, ...\}$ be an enumeration of all regular langs. Then we can construct $\{(f_0, D_0), (f_1, D_1), ...\}$ such that $\Phi = f_0 \subseteq f_1 \subseteq f_2 \subseteq ...$ # increasing list of partial functions $\Phi = D_0 \subseteq D_1 \subseteq D_2 \subseteq ...$ Either $R_i \subseteq D_i$ or $\sim R_i \subseteq D_i$ # eventually covers all regular languages $\exists x \in D_i$. $f_i(x) \neq g_i(x)$ # different from every g_i D_i is not co-slender # technical detail f_i is bijective on D_i # almost identity For all but finitely many $x \in D_i$, $f_i(x) = x$ (hence IRP) $\forall x \in D_i$. len($f_i(x)$) = len(x) # linear size increase

Proof of the Main

By Induction $f_0 = D_0 = \Phi$ Suppose we already have f_n construct f_{n+1} and D_{n+1} . $- D_{n+1}$ must not be co-slender $- D_{n+1}$ must have elems to distinguish g_{n+1} and f_{n+1}

Requirements

- D_{n+1} must cover

either R_{n+1} or $\sim R_{n+1}$

Proof of the Main Lemma

- D_n is not co-slender. → Take x, y ∈ \sim D_n s.t. len(x)=len(y) but x≠y
- Then Take $D_{n+1} := D_n \cup \{x,y\} \cup R_n$ if it is not co-slender $D_{n+1} := D_n \cup \{x,y\} \cup \sim R_n$ otherwise `this becomes not-co-slender!
- Requirements - D_{n+1} must cover either R_{n+1} or $\sim R_{n+1}$
- D_{n+1} must not be co-slender
- D_{n+1} must have elems to distinguish g_{n+1} and f_{n+1}

Proof of the Main Lemma

We then construct f_{n+1} $f_{n+1}(s) = f_n(s)$ if $s \in D_n$ if $g_{n+1}(x) = x$ Requirements $f_{n+1}(x) = y$ - $f_n \subseteq f_{n+1}$ $f_{n+1}(y) = x$ - f_{n+1} is bijection on D_{n+1} - f_{n+1} is length preserving otherwise - f_{n+1} differs from g_{n+1} $f_{n+1}(x) = x$ - f_{n+1} is almost identity $f_{n+1}(y) = y$ $f_{n+1}(s) = s$ for all other $s \in D_{n+1}$

The class of IRP∩LSI transformations is not recursively enumerable.

Suppose it is. By previous lemma, let $f = \bigcup_{i \in Nat} f_i$ f is equal to none of $\{g_1, g_2, ...\}$ f is a total function Because each singleton {s_i} regular set must be covered by D_i =dom(f_i) eventually f is LSI (in fact, length-preserving) f is IRP next page

Main Theorem

f is IRP (In fact, f is FRP by almost the same proof, too.) Take any regular set R_i. If $R_i \subseteq D_i$ Since f_i is bijection & identity except fin. points, $f^{-1}(R_i) = f_i^{-1}(R_i)$ differs only finitely from R_i → regular If $\sim R_i \subseteq D_i$ Similarly, $f^{-1}(\sim R_i)$ is regular f is also a bijection, so $f^{-1}(R_i) = \sim f^{-1}(\sim R_i)$ → regular Contradiction.

Contradiction. Q.E.D.

Notes

If {g1, g2, ... } is an enumeration of computable total functions,
Then the f is a computable function.
f⁻¹ (as a mapping on regular languages) is computable.

<Summary> There exists f such that

- $f :: string \rightarrow string$ is computable & total
- f^{-1} :: REG \rightarrow REG is computable & total
- f is length-preserving, IRP, and FRP
- f is not in MSOTT = MTT* \cap LSI