
IRP∩LSI is not RE

presentation by Kazuhiro Inaba (NII, kinaba@nii.ac.jp)

IPL-Group Seminar

May 25, 2010

(Introduction of the manuscript:
Tetsuya Ishiu, “IRP is Strictly Larger Than MTT”

http://twitdoc.com/c/xrwhnm)

mailto:kinaba@nii.ac.jp
http://twitdoc.com/c/xrwhnm
http://twitdoc.com/c/xrwhnm
http://twitdoc.com/c/xrwhnm

The Talk is about a Property on…

String/Tree Transformations

e.g.,

and

Regular Languages

e.g.,

dup(s) = s ++ s

a*|b*

reverse([]) = []
reverse(x:xs)= reverse(xs)++[x]

a((a|b)*|c)*b

The Property IRP

Inverse Regularity Preserving

A function f is IRP iff

For any regular language L,

the inv. img. f-1(L) = {s | f(s) ∈ L} is regular

Example: “dup” and “reverse”

Example:

dup(s) =

s ++ s a*b*???a*|b*

Agenda

Why you should be interested in IRP?
IRP-based typechecking

Always-IRP computation models

Q: “Do the models cover all IRP?”

A: “No, IRP∩LSI is not RE.”
Proof Tech. 1: Clever diagonalization

Proof Tech. 2: Slenderness of languages

Why IRP?

Typechecking f :: LIN → LOUT ？
Verify that a transformation always

generates valid outputs from valid inputs.

f LIN LOUT

XSLT Template for

formating bookmarks
XBEL Schema XHTML Schema

PHP Script Arbitrary String
String not containing

“<script>”

Why IRP?

Typechecking f :: LIN → LOUT ？
If f is IRP, we can check this by …

f is type-correct

⇔ f(LIN) ⊆ LOUT

⇔ LIN ⊆ f-1(LOUT)

(for experts: f is assumed to be deterministic)

FAQ: Why IRP?

ForwardRP also enables typechecking

FRP-based checking: f(LIN) ⊆ LOUT

IRP-based checking : LIN ⊆ f-1(LOUT)

Reasons

IRP provides more useful counter examples.

Many functions in practice tend to be IRP,

but not so for FRP. E.g., “dup”.

IRP-Based Typechecking

Not all transformations are IRP

The trend is to define a restricted

language whose programs are always IRP

and present sound & complete

typechecking for them

or use them as clearly defined targets for

approximate checking

Famous Computation Models of
IRP Tree Transformations

MTT* = PTT* = ATT* = …

MTT [Engelfriet&Vogler 1985]

PTT
[Milo&Suciu&

Vianu 2000]

ATT [Fülop 1981]

T
[Thatcher70,

Rounds70]

B

MSOTT
[Courcelle 1994]

GSM

(note: X* := {f1・f2・…・fn | n∈Nat, fi∈X })

One Example: MTT

MTT = The class of functions on trees defined

by (mutual) structural recursion +

accumulating parameters

MTT* = Finite composition of MTTs

MTT ::= FUN … FUN
FUN ::= f(A(x1,…,xn), y1,…,yk) → RHS

RHS ::= C(RHS, … , RHS)
| f(xi, RHS, …, RHS) | yi

start(A(x1)) → double(x1, double(x1, E))
double(A(x1), y1) → double(x1, double(x1, y1))
double(B, y1) → C(y1, y1)

Syntax

Example

Question

Do they cover all IRP transformations?

MTT* = PTT* = ATT* = .. = IRP ?

⊆ is known

⊇ ?

(Attribution: I’ve first heard this question from

Sebastian Maneth, who heard it from Keisuke Nakano)

Answer: “No”

K. Inaba, PPL 2010 Short Presentation

tower(“a..a”) = “aa…aa”
where 2^^0 = 1, 2^^(n+1) = 22^^n

is IRP but not in MTT*

But its growth is toooooooooo fast!

Aren’t there any “milder” counterexample?

2^^nn

LSI: Linear Size Increase =
∃c. ∀t. len(f(t))＜c・len(t)

MTT* = PTT* = ATT* = …

MTT
PTT

ATT

T

BMSOTT
= MSOTT*

= (MTT*=PTT*=…)∩LSI

= (MTT∩LSI)* = …

GSM

New Question

MSOTT

= (MTT*=PTT*=ATT*=…)∩LSI

= IRP ∩ LSI ?

⊆ is known

⊇ ?

There exists a IRP∩LSI transformation

that cannot be written in MSOTT

Main Theorem of This Talk

The class of IRP∩LSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)

Answer: “No”

THE PROOF

Overview

Basic idea is

the Diagonalization (対角線論法)

“Give me a enumeration {g1, g2, g3, …} of the

class of functions. Then I will show you a

function f not in the enumeration.”

The class of IRP∩LSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)

Diagonalization

(Assuming a fixed alphabet,) we can

enumerate all string/trees: {t1, t2, t3, …}

Given enumeration {g1, g2, g3, …} of the class

We construct f as:

f(ti) := arbitrary tree

except gi(ti)

Caution!

f may not be IRP nor LSI

t1 t2 t3 t4 …

g1 ×

g2 ×

g3 ×

g4 ×

… …

Diagonalization

What we really want is this:

“Give me a enumeration {g1, g2, g3, …}

of the IRP ∩ LSI functions. Then I will

show you a function f not in the

enumeration but in IRP∩LSI.”

which derives contradiction.

The class of IRP∩LSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)

Diagonalization

We can enumerate all regular languages:

{R1, R2, R3, …}

Given enumeration {g1, g2, g3, …} of the class

We construct f so that:

f(t) ≠ gi(t) for some

t ⇜ {R1,R2,…,Ri}

f-1(Ri) = almost Ri

R1 R2 R3 R4 …

g1 ×

g2 ×

g3 ×

g4 ×

… …

Preparation

Known facts on Regular Languages

All finite sets are regular

They are closed under boolean ops.
If R1, R2 ∈ REG then

R1 ∩ R2 ∈ REG

R1 ∪ R2 ∈ REG

～R1 ∈ REG

“Slenderness” is decidable
[Paun&Salomaa 1993] “Language-Theoretic Problems Arising from

Richelieu Cryptosystems”, TCS(116), pp.339-357

Preparation: Slenderness

A set L of string is slender iff

∃c. ∀n. #{s | s∈L, len(s)=n } ≦ c

{1, 11, 111, 1111, …} is slender

{0, 1, 10, 11, 100, 101, …} is not slender

L1,L2 is slender L1∪L2 is slender

L1,L2 is co-slender L1∩L2 is co-slender

Co-slender ⇔ complement is slender

Not co-slender ⇔ a plenty of supply of

non-members

Main Lemma
Let {g1, g2, … } be an enumeration of total functions.

Let {R1, R2, … } be an enumeration of all regular langs.

Then we can construct {(f0,D0), (f1,D1), …} such that

Φ=f0 ⊆ f1 ⊆ f2 ⊆ …

Φ=D0 ⊆ D1 ⊆ D2 ⊆ …

Either Ri ⊆ Di or ～Ri ⊆ Di

∃x∈Di. fi(x) ≠ gi(x)

Di is not co-slender

fi is bijective on Di

For all but finitely many x∈Di, fi(x) = x

∀x∈Di. len(fi(x)) = len(x)

increasing list of partial functions

linear size increase

eventually covers all
regular languages

almost identity
(hence IRP)

technical detail

different from every gi

Proof of the Main Lemma

By Induction

f0 = D0 = Φ

Suppose we already have fn and Dn , and

construct fn+1 and Dn+1.

Set of

All Strings Dn+1 = dom(fn+1)

where fn+1 ≠ gn+1

Rn+1Dn = dom(fn)

Requirements

- Dn+1 must cover
either Rn+1 or ～Rn+1

- Dn+1 must not be

co-slender
-

- Dn+1 must have

elems to distinguish

gn+1 and fn+1

Proof of the Main Lemma

Dn is not co-slender.

Take x, y ∈～Dn s.t. len(x)=len(y) but x≠y

Then Take

Dn+1 := Dn ∪ {x,y} ∪ Rn

if it is not co-slender

Dn+1 := Dn ∪ {x,y} ∪ ～Rn

otherwise

Requirements

- Dn+1 must cover
either Rn+1 or ～Rn+1

- Dn+1 must not be

co-slender
-

- Dn+1 must have

elems to distinguish

gn+1 and fn+1

↑this becomes
not-co-slender!

Proof of the Main Lemma

We then construct fn+1

fn+1(s) = fn(s) if s ∈ Dn

if gn+1(x) = x

fn+1(x) = y

fn+1(y) = x

otherwise

fn+1(x) = x

fn+1(y) = y

fn+1(s) = s for all other s ∈ Dn+1

Requirements

- fn ⊆ fn+1

- fn+1 is bijection on Dn+1

- fn+1 is length preserving

- fn+1 differs from gn+1

- fn+1 is almost identity

Q.E.D.

Main Theorem

Suppose it is. By previous lemma,

let f = ∪i∈Nat fi

f is equal to none of {g1, g2, …}

f is a total function

Because each singleton {si} regular set must be

covered by Di=dom(fi) eventually

f is LSI (in fact, length-preserving)

f is IRP

next page

The class of IRP∩LSI transformations

is not recursively enumerable.

Main Theorem

f is IRP (In fact, f is FRP by almost the same proof, too.)

Take any regular set Ri.

If Ri ⊆ Di

Since fi is bijection & identity except fin. points,

f-1(Ri) = fi
-1(Ri) differs only finitely from Ri

 regular

If ～Ri ⊆ Di

Similarly, f-1(～Ri) is regular

f is also a bijection, so f-1(Ri)=～f-1(～Ri)

 regular
Contradiction.

Q.E.D.

Notes

If {g1, g2, … } is an enumeration of

computable total functions,

Then the f is a computable function.

f-1 (as a mapping on regular languages) is

computable.

<Summary> There exists f such that

- f :: string string is computable & total

- f-1 :: REG REG is computable & total

- f is length-preserving, IRP, and FRP

- f is not in MSOTT = MTT*∩LSI

