
Multi-Return

Macro Tree Transducers

Kazuhiro Inaba

Haruo Hosoya

University of Tokyo

PLAN-X 2008, San Francisco

Models of Tree Translation

(Top-down) Tree Transducer (TOP)

[Rounds/Thatcher, 70’s]

Finite set of relations from a tree to a tree

Defined by structural (mutual) recursion on the

input tree

<q, bin(x1,x2)> → fst(<q,x1>, <p,x2>)
<q, leaf()> → leaf()

<p, bin(x1,x2)> → snd(<q,x1>, <p,x2>)
<p, leaf()> → leaf()

<q, bin(x1,x2)> → fst(<q,x1>, <p,x2>)
<q, leaf()> → leaf()

<p, bin(x1,x2)> → snd(<q,x1>, <p,x2>)
<p, leaf()> → leaf()

bin

bin bin

bin leaf

leaf leaf

leaf leaf

fst

fst snd

fst leaf

leaf leaf

leaf leaf

Models of Tree Translation

Macro Tree Transducer (MTT)

[Engelfriet/Vogler 85]

Tree Transducer + Accumulating parameters

Strictly more expressive than TOP

<q, bin(x1,x2)>(y) → bin(<q,x1>(1(y)),
<q,x2>(2(y)))

<q, leaf()> (y) → y

<q, bin(x1,x2)>(y) → bin(<q,x1>(1(y)),
<q,x2>(2(y)))

<q, leaf()> (y) → y

bin

bin bin

bin leaf

leaf leaf

leaf leaf

bin

bin bin

bin 2

1 2

1 2

1

1

leaf

1

1

leaf

1

leaf

2

leaf

2

leaf

Multi-Return Macro Tree Transducer

[Our Work]

Macro Tree Transducer + Multiple return values

<q, bin(x1,x2)>(y) → let (z1,z2) = <q,x1>(1(y)) in
let (z3,z4) = <p,x2>(2(y)) in
(bin(z1,z3), fst(z2,z4))

<q, leaf()> (y) → (leaf(), y)

<p, bin(x1,x2)>(y) → let (z1,z2) = <q,x1>(1(y)) in
let (z3,z4) = <p,x2>(2(y)) in
(bin(z1,z3), snd(z2,z4))

<p, leaf()> (y) → (leaf(), y)

Outline

Why Multi-Return?

Definition of Multi-Return MTT

Expressiveness of Multi-Return MTT

Deterministic case

Nondeterministic case

Why Multi-Return?

Why Multi-Return?

MTT is not symmetric

can pass multiple tree-fragments from a parent

to the children via accumulation parameters

<q0, a(x)> → <q1,x>(some(tree,here),
other(tree,here))

<q1, b(x)>(y1,y2) → use(y1, and(y2), here)

Why Multi-Return?

MTT is not symmetric

can not pass multiple tree-fragment from a child

to the parent

Multi-Return MTT can:

<q0, a(x)> → can(use(<q1,x>), here)

<q1, b(x)> → one(tree)

<q0, a(x)> → let (z1,z2) = <q1,x> in
can(use(z1), and(z2), here)

<q1, b(x)> → (one(tree), two(tree))

Inefficiency caused by the lack of child-to-

parent multiple tree passing

Gather all subtrees with root node labeled

“a” and all subtrees labeled “b”
pair

cons

cons

cons

nil

a
a a

b

b

cons

cons

nil

Normal MTT realizing this translation must

traverse the input tree twice

For gathering “a” and gathering “b”

No way to pass two intermediate lists from child

to parent!

<q0, root(x)> → pair(<get_a,x>(nil()),
<get_b,x>(nil()))

<get_a, a(x)>(y) → cons(a(x), <get_a,x>(y))
<get_a, b(x)>(y) → <get_a, x>(y)
…
<get_b, a(x)>(y) → <get_b, x>(y)
<get_b, b(x)>(y) → cons(b(x), <get_b,x>(y))

Multi-Return MTT realizing this translation

must traverse the input tree twice

<q0, root(x)> → let (z1,z2) = <get,x>(nil(),nil()) in
pair(z1, z2)

<get, a(x)>(ya,yb) → let (z1,z2) = <get,x>(ya,yb) in
(cons(a(x),ya), yb)

<get, b(x)>(ya,yb) → let (z1,z2) = <get,x>(ya,yb) in
(ya, cons(b(x),yb))

Definition of

(Multi-Return) MTT

Macro Tree Transducer (MTT)

A MTT is a tuple consisting of

Q : Set of states

q0 : Initial state

Σ : Set of input alphabet

Δ : Set of output alphabet

R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → rhs

rhs ::= δ(rhs, …, rhs)
| <q, xi>(rhs, …, rhs)
| yi

Macro Tree Transducer (MTT)

A MTT is defined to be

Deterministic if for every pair of q∈Q, σ∈Σ,

there exists at most one rule of the form

<q,σ(…)>(…) → …

Nondeterministic otherwise

Call-by-Value (Inside-Out) Evaluation

Arguments are evaluated first, before function

calls <q1, a(x)>() → <q2,x>(<q3,x>())
<q2, a(x)>(y)→ b(y, y)
<q3, a(x)>() → c()
<q3, a(x)>() → d() <q1, a(a(c()))> ⇒

b(c(),c()) or b(d(),d())

Multi-Return Macro Tree Transducer

(mr-MTT)

A mr-MTT is a tuple consisting of

Q : Set of states

q0 : Initial state

Σ : Set of input alphabet

Δ : Set of output alphabet

R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → rhs

rhs ::= (let (z1,..zn) = <q,xi>(t,…,t) in)* (t,…,t)
t ::= δ(t,…,t) | yi | zi

Multi-Return Macro Tree Transducer

(mr-MTT)

A mr-MTT is defined to be

Deterministic if for every pair of q∈Q, σ∈Σ,

there exists at most one rule of the form

<q,σ(…)>(…) → …

Nondeterministic otherwise

Call-by-Value (Inside-Out) Evaluation

Arguments are evaluated first, before function

calls

Expressiveness

Question

Are multi-return MTTs more

expressive than single-return MTTs?

(Is there any translation that can be

written in mr-MTT but not in MTT?)

Answer

Deterministic mr-MTTs are equal in

expressiveness to normal MTTs

In other words, every deterministic mr-MTT can

be simulated by a normal MTT

Nondeterministic mr-MTTs are strictly

more expressive than normal MTTs

Proof Sketch (Deterministic Case)

A state returning n-tuples of trees can be

split into n states returning a single tree

<q,…>(…)→let (z1,z2) = <q,x> in (a(z1,z2), b(z2,z1))

<q_1,…>(…) → let z1 = <q_1,x> in
let z2 = <q_2,x> in a(z1,z2)

<q_2,…>(…) → let z1 = <q_1,x> in
let z2 = <q_2,x> in b(z2,z1)

<q_1,…>(…) → a(<q_1,x>, <q_2,x>)
<q_2,…>(…) → b(<q_2,x>, <q_1,x>)

Nondeterministic case…

State-splitting may change the behavior

<q0, node(x)>
→ let (z1,z2) = <q,x> in

bin(z1,z2)
<q, leaf()> → (a(), a())
<q, leaf()> → (b(), b())

<q0, node(x)>
→ bin(<q_1,x>, <q_2,x>)

<q_1, leaf()> → a()
<q_2, leaf()> → a()
<q_1, leaf()> → b()
<q_2, leaf()> → b()

bin

a a

bin

b b

bin

a a

bin

b b

bin

b a

bin

a b

Nondeterministic case…

 In fact, there is no general way to simulate

a nondeterministic mr-MTT in a normal

MTT

Example of such translation ⇒ “twist”

Nondeterministically translates one input string

sss…ss
of length n to two string of the same length:

- one consists of symbols a and b, and

- the other consists of symbols A and B
such that the outputs are being reversal of each other.

“twist”

root

s

s

z

root

a

a

e

A

A

E

root

a

b

e

B

A

E

root

b

a

e

A

B

E

root

b

b

e

B

B

E

“twist” in Multi-Return MTT

<q, root(x)>→ let (z1,z2) = <p,x>(E()) in
root(z1, z2)

<p, s(x)>(y)→ let (z1,z2) = <p,x>(A(y)) in
(a(z1), z2)

<p, s(x)>(y)→ let (z1,z2) = <p,x>(B(y)) in
(b(z1), z2)

<p, z>(y) → (e(), y)

How to prove the inexpressibility in MTT?

Known proof techniques
Height Property

Size Property

Output Language

…

… all fails here.

→ Long and involved proof specialized for
the “twist” translation

Proof Sketch (Inexpressibility of “twist”)

“Reductio ad absurdum” argument

First, suppose a MTT realizing twist

Then, we show that the size of the set of output

from the MTT has polynomial upper bound w.r.t.

the size of the input tree

which is not the case for “twist”, having

exponential number of outputs

Rough Proof Sketch :: Step 0/5

Suppose a MTT M is realizing “twist”

Rough Proof Sketch :: Step 1/5

Lemma 4

If a term of M is evaluated to a proper subpart

of an output, it MUST be evaluated to the term

root

<q,t>(…)

root

B

Aa

b

e

if

Rough Proof Sketch :: Step 2/5

Lemma 5

Any term of M generating only the output of

“twist” is equivalent to a term if the following

form:

Example:

wnf ::= <q,t>(wnf, …, wnf) (always generates “root”)
| ct

ct ::= δ(ct, …, ct)

<q1,t1>(<q2,t2>(a(e), A(E)),
<q3,t3>(),
<q4,t4>(<q5,t5>(b(a(e), E)))

Rough Proof Sketch :: Step 3/5

Lemma 7

 Any term of M in the form of preceding slide is

equivalent to a set of terms in the following form

(“normal form” in the paper):

nf ::= <q,t>(st, …, st)
st ::= a(st) | b(st) | e() | A(st) | B(st) | E()

Rough Proof Sketch :: Step 4/5

Lemma 8

Two normal form terms with the same head

produces “similar” set of outputs – the number

of different output trees are constant

Shown by a similar argument to the first lemma

Rough Proof Sketch :: Step 5/5

Lemma 10 / Cor 1

The MTT M can produce at most O(n2)

number of output trees, where n is the length of

the input string

This is a contradiction, since

M is supposed to realize “twist”

The number of output trees from “twist” is 2n

Conclusion

Conclusion

Multi-return MTT

 MTT + Multiple Return Values

Expressiveness

Deterministic: same as MTT

Nondeterministic: more powerful than MTT

Future/Ongoing Work

 Decomposition of mr-MTT

 Is a mr-MTT can be simulated by a composition of

multiple MTTs?

 Hierarchy of mr-MTT

The width of returned tuples affects the expressivenss?

 Application of the proof technique to other

translations know “as a folklore” not to be

expressible in MTT
Thank you for listening!

