
Higher-Order Tree Transducers
and

Their Expressive Power

Kazuhiro Inaba
at Dagstuhl Seminar, May 2013

Regular
Tree Grammar

(Top-Down)
Tree Transducer

• Δ = {a, b, c, ...}

• N = {F, G, H, ..., S, T, ...}

• R = set of rules

• S ∈ N

 S  a T T
 S  b
 T  c S S

 S (s x1 x2)  a (T x1) (T x2)
 S (t)  b
 T (s x1 x2)  c (S x1) (S x2)

• Σ = {s, t, u, ...}

• Δ = {a, b, c, ...}

• N = {F, G, H, ..., S, T, ...}

• R = set of rules

• S ∈ N

Each nonterminal generates
(a set of) trees.

F : O

Each nonterminal takes an
input tree and generates
(a set of) trees.

F : I  O

input tree

c

a

c

b b b a

Regular
Tree Grammar

(Top-Down)
Tree Transducer

 S  T d d
 T y1 y2  T (b y1) (c y2)
 T y1 y2  a y1 y2

 S (s x1)  T x1 d d
 T (s x1) y1 y2  T x1 (b y1) (c y2)
 T z y1 y2  a y1 y2

Each nonterminal takes
parameter trees and
generates (a set of) trees.

F : Ok  O

Each nonterminal takes an
input tree and parameter
trees, and generates trees.

F : I Ok
 O

Context-Free
Tree Grammar

Macro
Tree Transducer

input tree

input tree

tree
parameter

tree
parameter

Regular
Tree Grammar

(Top-Down)
Tree Transducer

Context-Free
Tree Grammar

Macro
Tree Transducer

input tree

input tree

tree
parameter

tree
parameter

Higher-Order
Tree Grammar

Higher-Order
Tree Transducer input tree

higher-order
parameter

higher-order
parameter

HMTT

multiple
input trees

Example of a higher-order transducer

 Mult : I  O

Mult (pair x1 x2)  Iter x1 (Add x2) z

 Iter : I  (O  O)  O  O

Iter (s x1) f y  Iter x1 f (f y)
Iter z f y  y

 Add : I  O  O

Add (s x1) y  Add x1 (s y)
Add z y  y

Z

S Z

S S

S S

pair

Z

S

S

S

S

S

S

(Examples of) problems we should be interested in

Model Checking
 Given a deterministic higher-order grammar G
 representing a (possibly infinite) single tree t, and a
 MSO sentence φ, decide whether t satisfies φ.

Membership
 Given a higher-order grammar G and a tree t,
 decide whether t ∈ [G] or not.

Type Checking
 Given a higher-order tree transducer f and regular tree
 languages S and T, decide whether f(S)⊆T or not.

Equi-Expressivity
 What is the automata-like of the models?
 Can they be “decomposed” to simpler models?

Agenda

• Introduction

• Two notions of “higher-order” types.

• Review of known results.

• Context-sensitiveness of “safe” higher-order
languages [I. and Maneth, 2008]

Two Notions of “Higher Order” Types (1)

• “Derived Types”

– OI-Hierarchy [Damm 82]

– High-Level Tree Tranducer [Engelfriet & Vogler 88]

D0 = O
 “Trees” are order-0.

Di+1 = { Di
k  Di | k ∈ N }

 Functions from order-i objects to
 order-i objects are order-(i+1).

order(t) = i if t ∈ Di

Two Notions of “Higher Order” Types (2)

D ::= O | DD
 “Trees” are order-0, and ...

order(O) = 0
order(t1t2) =
 max(order(t1)+1, order(t2))

• Recently actively studied in context of program
verification [Ong 06, ...] or linguistics
[Kobele&Salvati 13, ...].

The Difference

• Functions parameters of “Derived Types” have
decreasing order

 Dn  (Dn-1  (Dn-2  ... (O  O) ...))

 which does not contain, e.g.,
 λx. λf. λy. f x : O  (OO)  O  O

 It implies:

Safety [Knapik&Niwinski&Urzyczyn 01, 02]
 No order-k subterm can contain order <k free variables.

Safety

Unsafe example: λy. ((λx. λy. a x y) y)

 λy. ((λy. a x y)[x/y])

 λy. (λy. a y y) this is wrong

Safety [KNU 01, 02]
 No order-k subterm can contain order <k free variables.

[KNU 01, 02] [Blum&Ong 09]
 In safe grammars/λ-calculus, you don’t need to care
 about variable capturing while substitution.

!!

“Safe” :: Di+1 = {Di
k  Di}

Grammars

• MSO model checking is
decidable. [KNU 01, 02]

• Hierarchy is strict. [Damm 82]

• Equivalent to “iterated
pushdown automata” [Da 82]

 (= (stack of)* stacks)

• Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV88]

• n-DHTT = (1-DHTT) n

• n-NHTT ⊆ (1-NHTT) n

“Unsafe” :: DD

• MSO model checking is
decidable. [Ong 06, Kobayashi 09]

• Hierarchy is strict.
[Kartzow&Parys 12]

• Equivalent to “collapsible
pushdown automata”
[Hague&Murawski&Ong&Serre 08]

• ????

• ????

“Safe” :: Di+1 = {Di
k  Di}

Grammars

• MSO model checking is
decidable. [KNU 01, 02]

• Hierarchy is strict. [Damm 82]

• Equivalent to “iterated
pushdown automata” [Da 82]

 (= (stack of)* stacks)

• Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV88]

• n-DHTT = (1-DHTT) n

• n-NHTT ⊆ (1-NHTT) n

“Unsafe” :: DD

• MSO model checking is
decidable. [Ong 06, Kobayashi 09]

• Hierarchy is strict.
[Kartzow&Parys 12]

• Equivalent to “collapsible
pushdown automata”
[Hague&Murawski&Ong&Serre 08]

• ????

• ????

“Safe” :: Di+1 = {Di
k  Di}

Grammars

• MSO model checking is
decidable. [KNU 01, 02]

• Hierarchy is strict. [Damm 82]

• Equivalent to “iterated
pushdown automata” [Da 82]

 (= (stack of)* stacks)

• Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV88]

• n-DHTT = (1-DHTT) n

• n-NHTT ⊆ (1-NHTT) n

“Unsafe” :: DD

• MSO model checking is
decidable. [Ong 06, Kobayashi 09]

• Hierarchy is strict.
[Kartzow&Parys 12]

• Equivalent to “collapsible
pushdown automata”
[Hague&Murawski&Ong&Serre 08]

• ????

• ????

“Collapsible” Pushdown Automata
[Hague at al. 08]

• Order-n collapsible pushdown store is
– (stack of)n symbols

– with each symbol associated with “links”

• Push1 : pushes a symbol and link to the top.
• Dupk : duplicates the top order-k stack.
• Popk : pops the top order-k stack.
• Collapse : moves the top to the pointee of the top link.

“Safe” :: Di+1 = {Di
k  Di}

Grammars

• MSO model checking is
decidable. [KNU 01, 02]

• Hierarchy is strict. [Damm 82]

• Equivalent to “iterated
pushdown automata” [Da 82]

 (= (stack of)* stacks)

• Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV88]

• n-DHTT = (1-DHTT) n

• n-NHTT ⊆ (1-NHTT) n

“Unsafe” :: DD

• MSO model checking is
decidable. [Ong 06, Kobayashi 09]

• Hierarchy is strict.
[Kartzow&Parys 12]

• Equivalent to “collapsible
pushdown automata”
[Hague&Murawski&Ong&Serre 08]

• ????

• ????

2-unsafe = 2-safe [Aehlig&Miranda&Ong 05]

2-unsafe-det ⊄ n-safe-det [Parys 11, 12]

“Safe” :: Di+1 = {Di
k  Di}

Grammars

• MSO model checking is
decidable. [KNU 01, 02]

• Hierarchy is strict. [Damm 82]

• Equivalent to “iterated
pushdown automata” [Da 82]

 (= (stack of)* stacks)

• Context-sensitive.
[I.&Maneth 08]

Transducers [EV88]

• n-DHTT = (1-DHTT) n

• n-NHTT ⊆ (1-NHTT) n

“Unsafe” :: DD

• MSO model checking is
decidable. [Ong 06, Kobayashi 09]

• Hierarchy is strict.
[Kartzow&Parys 12]

• Equivalent to “collapsible
pushdown automata”
[Hague&Murawski&Ong&Serre 08]

• ????

• ????

1st order Decomposition of Safe HTT

Note: Higher order grammars can be simulated by Out(HTT).

[Engelfrier&Vogler 86,88] [Caucal 02]

 Safe-n-DHTT = (Safe-1-DHTT)n
 Safe-n-NHTT ⊆ (Safe-1-NHTT)n

n-th order tree transducer is representable by a n-
fold composition of 1st-order tree transducers.

Proof: n-HTT = (n-1)-HTT ; 1-HTT

Idea:
 Represent 1st-order term TreeTree by a Tree.

 Represent 1st-order application symbolically, too.

 F :: Tree  TreeTree

F z y  s (s y)

 F :: Tree  Tree

F z  s (s y)

…  @ (F x) z …  F x z

Proof: n-HTT = (n-1)-HTT ; 1-HTT

Represent 1st-order things symbolically.

Then a 1-HTT performs the actual “application”.

Eval (@ f b) y  Eval f (Eval b y)
Eval y y  y
Eval (s x) y  s (Eval x y)
Eval z y  z

 F :: Tree  Tree

F z  s (s y)
…  @ (F x) z

Mult (Pair (s z) (s z)) @

Z Iter (s z) (Add (s z)) @

Z

Iter z (Add (s z))

@

@

Add (s z) y

@

Z @

@

Add (s z) y

y

@

Z @

@

y

y

@

y

S y

Example

Mult (pair x1 x2)  @ (Iter x1 (Add x2)) z
Iter (s x) f  @ (Iter x f) (@ f y)
Iter z f  y
Add (s x)  @ (Add x) (s y)
Add z  y

Eval(, y=⊥) @

Z @

@

y

y

@

y

S y

Eval(, y=) Z @

@

y

y

@

y

S y

Eval(,y=Eval(,y=) Z @

y

y

@

y

S y

Z

S

Eval (@ f b) y  Eval f (Eval b y)
Eval y y  y
Eval (s x) y  s (Eval x y)
Eval z y  z

Eval(,y=) Z @

y @

y

S y

If it’s unsafe...

S  F a
F y  b (H (G y) c)
G x y  ...
H f y  d (f e) y

@

a F

@

a b

H (G y) c

@

a b

c

@

d ((G y) e) y

S  @ F a
F  b (@ (H (@ G y)) c)
G  ..
H f  d (@ f e) y

Consequences of First-Order
Decomposition

• Proof: because MTT (1-HTT) has the property.

• This gives decidable “type checking”.

– f(S)⊆T  f-1(T)⊆S : inclusion of REG is decidable.

[EV88]

f-1(T) ∈ REG if f∈Safe-HTT and T∈REG

Consequences of First-Order
Decomposition

• DCS = Deterministic-Context-Sensitive
= DLINSPACE membership

• Proof: in a next few slides...

• Corollary : Safe Higher-order languages (aka. OI-
Hierarchy) are context-sensitive.

[I. and Maneth 08]

f(T) ∈ DCS if f∈Safe-HTT and T∈REG

Proof: Out(1-HTT n) ∈DLINSPACE
The Key Idea

1-HTT n

t
s

s1 s2 Sn-1

s0

transform τ1 τ2 τn τ'1 τ'2 τ'n τ'
del

t
s

n-HTT
λ λ λ

“garbage free” 1-HTT n

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

τ’n τn-1

t

τn τn-1

t

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

τ’n τn-1

t

τ’del

τn τn-1

t

τn τ’n τ’del =

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part,
and fuse the deleter to the left [En75,77][EnVo85][EnMa02]

τ’n τ’n-1+del

t

τn τn-1

t

Repeat τ4 τ3 τ2 τ1

τ3 τ2 τ1 τ’4 τ’4d

τ34d τ2 τ1 τ’4

τ’3 τ2 τ1 τ’4 τ’34d

τ’3 τ234d τ1 τ’4

τ’3 τ’2 τ1 τ’4 τ’234d

τ’3 τ’2 τ’4 τ1234d

τ’3 τ’2 τ’4 τ’1 τ’1234d

Split

Fuse

Split

Fuse

Split

Fuse

Split

Summary: Out(Safe-n-HTT) is context sensitive.

1. Decompose n-HTT to (1-HTT)n.

2. Split each 1-HTT to (LT; 1-HTT).
= deleting and productive part

3. Fuse deleting part ahead.
1-HTT ; LT ⊆ 1-HTT

4. Now all intermediate
trees must be small.
Try them all in DLINSPACE.

λ
λ λ

t
s1 s2 Sn-1

s0

τ1 τ2 τn

τ'1 τ'2 τ'n τ'
del

“Safe” :: Di+1 = {Di
k  Di}

Grammars

• MSO model checking is
decidable. [KNU 01, 02]

• Hierarchy is strict. [Damm 82]

• Equivalent to “iterated
pushdown automata” [Da 82]

 (= (stack of)* stacks)

• Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV88]

• n-DHTT = (1-DHTT) n

• n-NHTT ⊆ (1-NHTT) n

“Unsafe” :: DD

• MSO model checking is
decidable. [Ong 06, Kobayashi 09]

• Hierarchy is strict. [Kartzow&Parys
12]

• Equivalent to “collapsible
pushdown automata”
[Hague&Murawski&Ong&Serre 08]

• Is unsafe higher-order
languages context-sensitive?

• Does unsafe higher-order
transducers have first-order
decompositions?

Open Questions

Idea: Stack-TT

• 1-HTT has difficulty in implementing capture-
avoiding substitution.

• How about extending them with a stack

• f (a x1 ... xn) y1 ... ym ys  RHS

 where RHS ::= d RHS ... RHS
 | yi
 | f xi RHS ... RHS ys

POP m values

PUSH

Unsafe substitution 
De-Bruijn index + Stack-TT

@

@

B

C

A

s s

(λx. λy. (A x y)) B C

(λ. λ. (A 0 1)) B C

z

Eval (@ f a) ys
  Eval f (Eval a ys) ys
Eval (s x) y ys  Eval x ys
Eval z y ys  y

Eval C A

z

s s

B

PUSH!

POP!

Even if it’s unsafe...

S  F a
F y  b (H (G y) c)
G x y  ...
H f y  d (f e) y

@

a b

c

@

d ((G y) e) y

S  @ F a
F  b (@ (H (@ G y)) c)
G  ..
H f  d (@ f e) y

S  @ F a
F  b (@ (H (@ G 2)) c)
G  ..
H f  d (@ (k1d2 f) e) 0

Eval (k1d2 x) y1 y2 y3 ys
 = Eval x y1 ys

Pros & Cons

• Good:

• Good:

• Bad: it is hard to make it garbage-free.

– There can be a sequence of significant stack
operations not generating output.

• Bad: it may be overly powerful.

Theorem: Unsafe-n-HTT ⊆ (Stack-TT)n

Theorem: Stack-TT ⊄ Unsafe-n-HTT

Proof: inverse of stack-TT does not preserve
regularity, while unsafe-n-HTT does.

Theorem: (Stack-TT ; LT) ⊆ Stack-TT

Found an error in
the proof during
discussion in the

seminar... X(

Summary

• “Safe” and “unsafe” HTT are different.

• Can we transfer results in “safe” case to “unsafe”?

– Can we decompose an unsafe-HTT to 1st order machines?

– Can we show context-sensitivity of the output language?

• See http://www.kmonos.net/pub/tmp/smtt.pdf for
the technical development.

http://www.kmonos.net/pub/tmp/smtt.pdf

