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Regular 
Tree Grammar 

(Top-Down) 
Tree Transducer 

• Δ = {a, b, c, ...} 

• N = {F, G, H, ..., S, T, ...} 

• R = set of rules  

• S ∈ N 
 

 S  a T T 
 S  b 
 T  c S S 

 S (s x1 x2)  a (T x1) (T x2) 
 S (t)           b 
 T (s x1 x2)  c (S x1) (S x2) 

• Σ  = {s, t, u, ...} 

• Δ = {a, b, c, ...} 

• N = {F, G, H, ..., S, T, ...} 

• R = set of rules  

• S ∈ N 

Each nonterminal generates 
(a set of) trees. 
 

F : O 

Each nonterminal takes an 
input tree and generates 
(a set of) trees. 

F : I  O 

input tree 
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Regular 
Tree Grammar 

(Top-Down) 
Tree Transducer 

 S           T d d 
 T y1 y2  T (b y1) (c y2) 
 T y1 y2  a y1 y2 

 S (s x1)           T x1 d d 
 T (s x1) y1 y2  T x1 (b y1) (c y2)  
 T  z       y1 y2  a y1 y2 

Each nonterminal takes 
parameter trees and 
generates (a set of) trees. 

F : Ok   O 

Each nonterminal takes an 
input tree and parameter 
trees, and generates trees. 

F : I Ok
  O 

Context-Free 
Tree Grammar 

Macro 
Tree Transducer 

input tree 

input tree 

tree 
parameter 

tree 
parameter 



Regular 
Tree Grammar 

(Top-Down) 
Tree Transducer 

Context-Free 
Tree Grammar 

Macro 
Tree Transducer 

input tree 

input tree 

tree 
parameter 

tree 
parameter 

Higher-Order 
Tree Grammar 

Higher-Order 
Tree Transducer input tree 

higher-order 
parameter 

higher-order 
parameter 

HMTT 

multiple 
input trees 



Example of a higher-order transducer 

  Mult : I  O 

Mult (pair x1 x2)  Iter x1 (Add x2) z 
 

 Iter : I  (O  O)  O  O 

Iter (s x1) f y  Iter x1 f (f y) 
Iter  z       f y  y 
 
 Add : I  O  O 

Add (s x1) y  Add x1 (s y) 
Add  z       y  y 

Z 

S Z 

S S 

S S 

pair 

Z 
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S 

S 

S 

S 

S 



(Examples of) problems we should be interested in 

Model Checking 
 Given a deterministic higher-order grammar G 
 representing a (possibly infinite) single tree t, and a 
 MSO sentence φ, decide whether t satisfies φ. 

Membership 
 Given a higher-order grammar G and a tree t,  
 decide whether t ∈ [G] or not. 

Type Checking 
 Given a higher-order tree transducer f and regular tree 
 languages S and T, decide whether f(S)⊆T or not. 

Equi-Expressivity 
 What is the automata-like of the models? 
 Can they be “decomposed” to simpler models? 



Agenda 

• Introduction 

• Two notions of “higher-order” types. 

• Review of known results. 

• Context-sensitiveness of “safe” higher-order 
languages [I. and Maneth, 2008] 



Two Notions of “Higher Order” Types (1) 

• “Derived Types” 

– OI-Hierarchy [Damm 82] 

– High-Level Tree Tranducer [Engelfriet & Vogler 88] 

D0 = O 
 “Trees” are order-0. 

Di+1 = { Di
k  Di   |   k ∈ N } 

 Functions from order-i objects to 
 order-i  objects are order-(i+1). 

order(t) = i     if t ∈ Di 



Two Notions of “Higher Order” Types (2) 

D ::= O | DD 
 “Trees” are order-0, and ... 

order(O) = 0 
order(t1t2) = 
 max(order(t1)+1, order(t2)) 

• Recently actively studied in context of program 
verification [Ong 06, ...] or linguistics 
[Kobele&Salvati 13, ...]. 



The Difference 

• Functions parameters of “Derived Types” have 
decreasing order 

       Dn  (Dn-1  (Dn-2  ... (O  O) ...)) 

    which does not contain, e.g., 
         λx. λf. λy. f x  : O  (OO)  O  O 

    It implies: 

Safety [Knapik&Niwinski&Urzyczyn 01, 02] 
 No order-k subterm can contain order <k free variables. 



Safety 

Unsafe example:  λy. ((λx. λy. a x y) y) 

 

 λy. ( (λy. a x y)[x/y] ) 

 λy. ( λy. a y y )       this is wrong 

Safety [KNU 01, 02] 
 No order-k subterm can contain order <k free variables. 

[KNU 01, 02] [Blum&Ong 09] 
 In safe grammars/λ-calculus,  you don’t need to care 
 about variable capturing  while substitution. 

!! 



“Safe”  :: Di+1 = {Di
k  Di} 

Grammars 

• MSO model checking is 
decidable. [KNU 01, 02] 

• Hierarchy is strict. [Damm 82] 

• Equivalent to “iterated 
pushdown automata” [Da 82] 

 (= (stack of)* stacks) 

• Context-sensitive. 
[Maneth 02][I.&Maneth 08] 

 

Transducers  [EV88] 

• n-DHTT = (1-DHTT) n 

• n-NHTT ⊆ (1-NHTT) n 

“Unsafe”  :: DD 

 

• MSO model checking is 
decidable. [Ong 06, Kobayashi 09] 

• Hierarchy is strict. 
[Kartzow&Parys 12] 

• Equivalent to “collapsible 
pushdown automata” 
[Hague&Murawski&Ong&Serre 08] 

• ???? 
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“Collapsible” Pushdown Automata 
[Hague at al. 08] 

• Order-n collapsible pushdown store is 
– (stack of)n symbols 

– with each symbol associated with “links” 

• Push1 : pushes a symbol and link to the top. 
• Dupk : duplicates the top order-k stack. 
• Popk : pops the top order-k stack. 
• Collapse : moves the top to the pointee of the top link. 
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2-unsafe = 2-safe  [Aehlig&Miranda&Ong 05] 

2-unsafe-det  ⊄  n-safe-det  [Parys 11, 12] 
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1st order Decomposition of Safe HTT 

Note: Higher order grammars can be simulated by Out(HTT). 

[Engelfrier&Vogler 86,88] [Caucal 02] 

  Safe-n-DHTT = (Safe-1-DHTT)n  
 Safe-n-NHTT ⊆ (Safe-1-NHTT)n 
 

n-th order tree transducer is representable by a n-
fold composition of 1st-order tree transducers. 



Proof: n-HTT = (n-1)-HTT ; 1-HTT  

Idea: 
  Represent 1st-order  term TreeTree by a Tree. 
 

 

 

  Represent 1st-order application symbolically, too. 

 F :: Tree  TreeTree 

F z y  s (s y) 

 F :: Tree  Tree 

F z  s (s y) 

…  @ (F x) z …  F x z 



Proof: n-HTT = (n-1)-HTT ; 1-HTT  

Represent 1st-order things symbolically. 

 

 

Then a 1-HTT performs the actual “application”. 

Eval (@ f b) y  Eval f (Eval b y) 
Eval y y   y 
Eval (s x) y  s (Eval x y) 
Eval z y   z 

 F :: Tree  Tree 

F z  s (s y) 
…  @ (F x) z 



Mult (Pair (s z) (s z)) @ 

Z Iter (s z) (Add (s z)) @ 

Z 

Iter z (Add (s z)) 

@ 

@ 

Add (s z) y 

@ 

Z @ 

@ 

Add (s z) y 

y 

@ 

Z @ 

@ 

y 

y 

@ 

y 

S y 

Example 

Mult (pair x1 x2)  @ (Iter x1 (Add x2)) z 
Iter (s x) f  @ (Iter x f) (@ f y) 
Iter z f    y 
Add (s x)   @ (Add x) (s y) 
Add z    y 



Eval(   , y=⊥) @ 

Z @ 

@ 

y 

y 

@ 

y 

S y 

Eval(   , y=   ) Z @ 

@ 

y 

y 

@ 

y 

S y 

Eval(   ,y=Eval(   ,y=   ) Z @ 

y 

y 

@ 

y 

S y 

Z 

S 

Eval (@ f b) y  Eval f (Eval b y) 
Eval y y   y 
Eval (s x) y  s (Eval x y) 
Eval z y   z 

Eval(   ,y=   ) Z @ 

y @ 

y 

S y 



If it’s unsafe... 

S  F a 
F y  b (H (G y) c) 
G x y   ... 
H f y  d (f e) y 

@ 

a F 

@ 

a b 

H (G y) c 

@ 

a b 

c 

@ 

d ((G y) e) y 

S  @ F a 
F  b (@ (H (@ G y)) c) 
G  .. 
H f  d (@ f e) y 



Consequences of First-Order 
Decomposition 

• Proof: because MTT (1-HTT) has the property. 

 

• This gives decidable “type checking”. 

– f(S)⊆T   f-1(T)⊆S  : inclusion of REG is decidable. 

[EV88] 

f-1(T) ∈ REG if       f∈Safe-HTT and T∈REG 



Consequences of First-Order 
Decomposition 

• DCS = Deterministic-Context-Sensitive 
= DLINSPACE membership 
 

• Proof: in a next few slides... 
 

• Corollary : Safe Higher-order languages (aka. OI-
Hierarchy) are context-sensitive. 

[I. and Maneth 08] 

f(T) ∈ DCS  if       f∈Safe-HTT and T∈REG 



Proof: Out(1-HTT n) ∈DLINSPACE 
The Key Idea 

1-HTT n 

t 
s 

s1 s2 Sn-1 

s0 

transform τ1 τ2 τn τ'1 τ'2 τ'n τ'
del 

t 
s 

n-HTT 
λ λ λ 

“garbage free” 1-HTT n 



How to Construct the “Garbage-Free” Form 

Make each 1-HTT “productive” 

τ’n τn-1 

t 

τn τn-1 

t 



How to Construct the “Garbage-Free” Form 

Make each 1-HTT “productive” 
by separating its “deleting” part 

τ’n τn-1 

t 

τ’del 

τn τn-1 

t 

τn τ’n τ’del = 



How to Construct the “Garbage-Free” Form 

Make each 1-HTT “productive” 
by separating its “deleting” part, 
and fuse the deleter to the left [En75,77][EnVo85][EnMa02] 

τ’n τ’n-1+del 

t 

τn τn-1 

t 



Repeat τ4 τ3 τ2 τ1 

τ3 τ2 τ1 τ’4 τ’4d 

τ34d τ2 τ1 τ’4 

τ’3 τ2 τ1 τ’4 τ’34d 

τ’3 τ234d τ1 τ’4 

τ’3 τ’2 τ1 τ’4 τ’234d 

τ’3 τ’2 τ’4 τ1234d 

τ’3 τ’2 τ’4 τ’1 τ’1234d 

Split 

Fuse 

Split 

Fuse 

Split 

Fuse 

Split 



Summary: Out(Safe-n-HTT) is context sensitive. 

1. Decompose n-HTT to (1-HTT)n. 
 

2. Split each 1-HTT to (LT; 1-HTT). 
= deleting and productive part 

 

3. Fuse deleting part ahead. 
1-HTT ; LT ⊆ 1-HTT  
 

4. Now all intermediate 
trees must be small. 
Try them all in DLINSPACE. 

 

λ 
λ   λ 

t 
s1 s2 Sn-1 

s0 

τ1 τ2 τn 

τ'1 τ'2 τ'n τ'
del 



“Safe”  :: Di+1 = {Di
k  Di} 

Grammars 

• MSO model checking is 
decidable. [KNU 01, 02] 

• Hierarchy is strict. [Damm 82] 

• Equivalent to “iterated 
pushdown automata” [Da 82] 

 (= (stack of)* stacks) 

• Context-sensitive. 
[Maneth 02][I.&Maneth 08] 

 

Transducers  [EV88] 

• n-DHTT = (1-DHTT) n 

• n-NHTT ⊆ (1-NHTT) n 

“Unsafe”  :: DD 

 

• MSO model checking is 
decidable. [Ong 06, Kobayashi 09] 

• Hierarchy is strict. [Kartzow&Parys 
12] 

• Equivalent to “collapsible 
pushdown automata” 
[Hague&Murawski&Ong&Serre 08] 

• Is unsafe higher-order 
languages context-sensitive? 

 

 

• Does unsafe higher-order 
transducers have first-order 
decompositions? 

Open Questions 



Idea: Stack-TT 

• 1-HTT has difficulty in implementing capture-
avoiding substitution. 

• How about extending them with a stack 

 

• f (a x1 ... xn) y1 ... ym ys  RHS 

 where  RHS ::= d RHS ... RHS 
                          | yi 
                          | f xi RHS ... RHS ys 

POP m values 

PUSH 



Unsafe substitution  
De-Bruijn index + Stack-TT 

@ 

@ 

B 

C 

A 

s s 

(λx. λy. (A x y)) B C 

(λ. λ. (A 0 1)) B C 

z 

Eval (@ f a) ys 
      Eval f (Eval a ys) ys 
Eval (s x) y ys  Eval x ys 
Eval z     y ys  y 

Eval              C A 

z 

s s 

B 

PUSH! 

POP! 



Even if it’s unsafe... 

S  F a 
F y  b (H (G y) c) 
G x y   ... 
H f y  d (f e) y 

@ 

a b 

c 

@ 

d ((G y) e) y 

S  @ F a 
F  b (@ (H (@ G y)) c) 
G  .. 
H f  d (@ f e) y 

S  @ F a 
F  b (@ (H (@ G 2)) c) 
G  .. 
H f  d (@ (k1d2 f) e) 0 

Eval (k1d2 x) y1 y2 y3 ys 
   = Eval x y1 ys 



Pros & Cons 

• Good: 

• Good:  
 

• Bad: it is hard to make it garbage-free. 

– There can be a sequence of significant stack 
operations not generating output. 

• Bad: it may be overly powerful. 

Theorem:  Unsafe-n-HTT ⊆ (Stack-TT)n 

Theorem:   Stack-TT ⊄ Unsafe-n-HTT 

Proof: inverse of stack-TT does not preserve 
regularity, while unsafe-n-HTT does. 

Theorem:  (Stack-TT ; LT) ⊆ Stack-TT 

Found an error in 
the proof during 
discussion in the 

seminar... X( 



Summary 

• “Safe” and “unsafe” HTT are different. 

 

• Can we transfer results in “safe” case to “unsafe”? 

– Can we decompose an unsafe-HTT to 1st order machines? 

– Can we show context-sensitivity of the output language? 

 

• See http://www.kmonos.net/pub/tmp/smtt.pdf for 
the technical development. 

 

http://www.kmonos.net/pub/tmp/smtt.pdf

