Higher-Order Tree Transducers
and
Their Expressive Power

Kazuhiro Inaba
at Dagstuhl Seminar, May 2013

Regular (Top-Down)
Tree Grammar :> Tree Transducer

input tree
« A={a,b,c ..} * 2 ={s,t,u, ..}
* N={F,G,H,..ST ..} * A={a,b,c ..}
e R =setof rules * N={FGH,.,5T..}
. SeN] e R=setofrules
7N >SN
S=2>aTT c | c S (s x;%,) =2 a(Txy)(Tx,)
S>b A1 I sig) b
T>cSS il ;\b T (s X, X,) = € (S %) (Sx,)
Each nonterminal generates Each nonterminal takes an
(a set of) trees. input tree and generates

(a set of) trees.
F:0 F:1 20

Regular
Tree Grammar

O

Context-Free
Tree Grammar

tree
parameter

S 2> Tdd

Ty, ¥, 2 T(byy)(cy,)
Ty1yzeay1y2

Each nonterminal takes

parameter trees and

generates (a set of) trees.
F:0<=> 0

(Top-Down)

—

Tree Transducer

input tree
@ tree
parameter
E— HEE
inputtree | 1r€€ Transducer
S (s xy) 2> Tx,dd

T(sx)y;Y, 2 Tx,(byy) (cy,)
T z ViV, 2 ay.Y,

Each nonterminal takes an
input tree and parameter

trees, and generates trees.
F:12 04> 0

Regular (Top-Down)
Tree Grammar :> Tree Transducer
input tree

tree tree
parameter parameter
Context-Free : > Macro

Tree Grammar input tree Tree Transducer
higher-order higher-order
parameter parameter
N N multiple
. input trees
Higher-Order :’> Higher-Order
Tree Grammar input tree Tree Transducer %j

HMTT

Example of a higher-order transducer

Mult:1-> O
Mult (pair x, x,) =2 Iter x; (Add x,) z

lter: 12 (02>0)=2> 020
lter (s x,) fy = Iterx, f (fy)
lter z fy—2>y

Add:1> 00
Add (s x,) y = Add x, (s y)
Add z y—2vy

pair

() (N\
/ . /

4 N\ ()
. J/ . /

() (N\
\ / . /

) 9

N =~ N = N =N =N =N = N

(Examples of) problems we should be interested in

Membership
Given a higher-order grammar G and a tree t,
decide whether t € [G] or not.

Type Checking
Given a higher-order tree transducer f and regular tree
languages S and T, decide whether f(S)&T or not.

Model Checking
Given a deterministic higher-order grammar G
representing a (possibly infinite) single tree t, and a
MSO sentence ¢, decide whether t satisfies &.

Equi-Expressivity
What is the automata-like of the models?
Can they be “decomposed” to simpler models?

Agenda

* Two notions of “higher-order” types.
* Review of known results.

e Context-sensitiveness of “safe” higher-order
languages [l. and Maneth, 2008]

Two Notions of “Higher Order” Types (1)
/" D,=0 N

“Trees” are order-0.

|+1 { D ‘ 2 D ‘ k €N }
Functlons from order-i objects to
order-i objects are order-(i+1).

_ order(t)=i ift €D, -/

 “Derived Types”
— Ol-Hierarchy [Damm 82]
— High-Level Tree Tranducer [Engelfriet & Vogler 88]

Two Notions of “Higher Order” Types (2)

* Recently actively studied in context of program
verification [Ong 06, ...] or linguistics
[Kobele&Salvati 13, ...].

4 D::=0| D>D o
“Trees” are order-0, and ...
order(0)=0
order(t,2t,) =
N max(order(t,)+1, order(t,)) Y.

The Difference

* Functions parameters of “Derived Types” have
decreasing order

D> ,>(D,=>..(0>0)..)
which does not contain, e.g.,
M. AL AY.fx :0> (020)>0->0

It implies:

Safety [Knapik&Niwinski&Urzyczyn 01, 02]
No order-k subterm can contain order <k free variables.

Safety

Safety [KNU 01, 02]
No order-k subterm can contain order <k free variables.

[KNU 01, 02] [Blum&Ong 09]

In safe grammars/A-calculus, you don’t need to care
about variable capturing while substitution.

Unsafe example: Ay. ((Ax. Ay. a X y) Y)

2> Ay. ((Ay. axy)[x/y])
=> Av. (Ay.ayy) thisis wrong

“Safe” ::D,,,={DX-> D}

“Unsafe” :: DD

Grammars

* MSO model checking is
decidable. [KNu 01, 02]

e Hierarchy is strict. [Damm 82]

* Equivalent to “iterated
pushdown automata” [Dpa 82]

(= (stack of)* stacks)

e Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV8S8]
e n-DHTT = (1-DHTT) "
e n-NHTT € (1-NHTT) "

MSO model checking is
decidable. [Ong 06, Kobayashi 09]
Hierarchy is strict.
[Kartzow&Parys 12]

Equivalent to “collapsible

pushdown automata”
[Hague&Murawski&Ong&Serre 08]

2977?

2977?

“Safe” ::D,,,={DX-> D}

“Unsafe” :: DD

Grammars

* MSO model checking is
decidable. [KNU 01, 02]

* Hierarchy is strict. [Damm 82]

* Equivalent to “iterated
pushdown automata” [Dpa 82]

(= (stack of)* stacks)

e Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV8S8]
e n-DHTT = (1-DHTT) "
e n-NHTT € (1-NHTT) "

MSO model checking is
decidable. [Ong 06, Kobayashi 09]

Hierarchy is strict.
[Kartzow&Parys 12]

Equivalent to “collapsible

pushdown automata”
[Hague&Murawski&Ong&Serre 08]

2977?

2977?

“Safe” ::D,,,={DX-> D}

“Unsafe” :: DD

Grammars

* MSO model checking is
decidable. [KNU 01, 02]

e Hierarchy is strict. [Damm 82]

* Equivalent to “iterated
pushdown automata” [Dpa 82]

(= (stack of)* stacks)

e Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV8S8]
e n-DHTT = (1-DHTT) "
e n-NHTT € (1-NHTT) "

MSO model checking is
decidable. [Ong 06, Kobayashi 09]

Hierarchy is strict.
[Kartzow&Parys 12]

Equivalent to “collapsible

pushdown automata”
[Hague&Murawski&Ong&Serre 08]

2977?

2977?

“Collapsible” Pushdown Automata

[Hague at al. 08]

* Order-n collapsible pushdown store is
— (stack of)" symbols
— with each symbol associated with “links”

=N

[[[al]l [[1[labellabel]]

Push,
Dup,
Pop,
Collapse

: pushes a symbol and link to the top.
: duplicates the top order-k stack.

: pops the top order-k stack.

: moves the top to the pointee of the top link.

“Safe” ::D,,,={DX-> D}

“Unsafe” :: DD

Grammars

* MSO model checking is
decidable. [KNU 01, 02]

* Hierarchy is strict. [Damm 82]

* Equivalent to “iterated

pushdown automata” [Da 82]

(= (stack of)* stacks)

e Context-sensitive.
[Maneth 02][l.&Maneth 08]

Transducers [EV88]
e n-DHTT = (1-DHTT) "
e n-NHTT & (1-NHTT) "

MSO model checking is
decidable. [Ong 06, Kobayashi 09]
Hierarchy is strict.
[Kartzow&Parys 12]

Equivalent to “collapsible

pushdown automata”
[Hague&Murawski&Ong&Serre 08]

2977

2-unsafe = 2-safe [Aehlig&Miranda&Ong 05]
2-unsafe-det & n-safe-det [Parys 11, 12]

2977?

“Safe” ::D,,,={DX-> D}

“Unsafe” :: DD

Grammars

* MSO model checking is
decidable. [KNU 01, 02]

* Hierarchy is strict. [Damm 82]

* Equivalent to “iterated
pushdown automata” [Da 82]
(= (stack of)* stacks)

* Context-sensitive.
[l.&Maneth 08]

Transducers [EV88]
e n-DHTT = (1-DHTT) "
e n-NHTT & (1-NHTT) "

MSO model checking is
decidable. [Ong 06, Kobayashi 09]
Hierarchy is strict.
[Kartzow&Parys 12]

Equivalent to “collapsible

pushdown automata”
[Hague&Murawski&Ong&Serre 08]

277?

277?

15t order Decomposition of Safe HTT

[Engelfrier&Vogler 86,88] [Caucal 02]
Safe-n-DHTT = (Safe-1-DHTT)"
Safe-n-NHTT & (Safe-1-NHTT)"

n-th order tree transducer is representable by a n-
fold composition of 1%t-order tree transducers.

Note: Higher order grammars can be simulated by Out(HTT).

Proof: n-HTT = (n-1)-HTT ; 1-HTT

Idea:
Represent 15t-order term Tree=>Tree by a Tree.

F :: Tree > Tree—>Tree F :: Tree > Tree
Fzy =2 s (sy) Fz=2s (sy)

Represent 1%t-order application symbolically, too.

. 2> F X z j>---')@(FX)Z

Proof: n-HTT = (n-1)-HTT ; 1-HTT

Represent 15t-order things symbolically.

F :: Tree - Tree

F 2z s (sy) . =2 @ (F x) z

4

Then a 1-HTT performs the actual “application”.

Eval (@ f b) y = Eval f (Eval b y)
Eval vy vy >y

Eval (s x) vy = s (Eval x y)
Eval z y > Z

Mult (pair x; X,) = @ (Iter x; (Add x,)) z
Iter (s x) f = @ (Iter x) (@ T y)
Iter z T > 2B

Add (s x) =2 @ (Add x) (s vy)

Add z > 2B

Mult (Pair (s z) (s z)) @ @

e Iter (s z) (Add (s 2)) | Z @ @

e = e
) <3< = rter 7 dd s 7| @)

° :

D y [@j @ Add (s z) (ﬂ

Add (s 2) Example

Eval (@ f b) y =» Eval f (Eval b y)

Eval VYV > 2 y
Eval (s x) y = s (Eval x y)
Eval z Yy - 7
1 —
. Eva (@,y Z)
| e v
VA

G
[@] z Eva'l(@, y= 2) Z\\B
[@ [@a Eval (a,Y=Eva1 (@,y: z D
e v e Wy el
W & Hp Wk v

If it’s unsafe...

S = Fa j

Fy =2>b(H(Gy)c) e

GXy = ... - _ H(Gy)c
Hfy =2 d(fe)y

S > @Fa

F 2 b(@(H(@ Gy))c)

G . @
Hf =d(@fe)y

d((Gy)e)y

Consequences of First-Order
Decomposition

[EV8S8]
f-1(T) € REG if f&Safe-HTT and TEREG

* Proof: because MTT (1-HTT) has the property.

* This gives decidable “type checking”.
—f(S)ET € f{T)ES :inclusion of REG is decidable.

Consequences of First-Order
Decomposition

[l. and Maneth 08]
f(T) & DCS if feESafe-HTT and TEREG

* DCS = Deterministic-Context-Sensitive
= DLINSPACE membership

 Proof: in a next few slides...

e Corollary : Safe Higher-order languages (aka. Ol-
Hierarchy) are context-sensitive.

Proof: Out(1-HTT ") €DLINSPACE
The Key Idea

oW

1-HTT “garbage free” 1-HTT "

BNGT YNNG

AT

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

A/\®AE>:> A@A

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

ENECMIEN

I Ye ﬁﬁ\%ﬁ

How to Construct the “Garbage-Free” Form
Make each 1-HTT “productive”

by separating its “deleting” part,
and fuse the deleter to the left [en7s,771[Envoss][Enma02]

At/\ A= EE= Y

Repeat Split

, R
EBIEN EN TN ES
Fusef 4 N [N\
LT JLT Tagg Ty
Split
4 4 4 ’ N 7 ’ N [’ N\
ENEN (NN
Fuse 4 N [N [N\
)) 4
T T T T
ol LT 2344 3 I T,
, — : I
A W v, v,
e N\) ’ Ya ’ ~
Split _ VTq2349 JL T Ty I U4,
) e) N\ O ’ ’ Ya ’ ~
tlﬁddl L] T, Ty JI U,

Summary: Out(Safe-n-HTT) is context sensitive.

1. Decompose n-HTT to (1-HTT)". @

2. Split each 1-HTT to (LT; 1-HTT).

= deleting and productive part Q-
| SN ESREES
3. Fuse deleting part ahead.
1-HTT ; LT & 1-HTT < —
4. Now all intermediate vy @ @

trees must be small. @ A
Try them all in DLINSPACE.

“Safe” ::D,,, ={DXx-> D)}

“Unsafe” :: D->D

Grammars s
e MSO model

ing is

decidable. | Open Questlons Kobayashi 09]

* Hierarchy is

. [Kartzow&Parys

| o
* Equivalent to 1terated
pushdown automata” [Da 82]

(= (stack of)* stacks)

e Context-sensitive.
[Maneth 02][I.&Maneth 08]

Transducers [EV8S8]
e n-DHTT =(1-DHTT) "
e n-NHTT & (1-NHTT) "

* Equivalent to “collapsible
pushdown automata”
[Hague&Murawski&Ong&Serre 08]

* Is unsafe higher-order
languages context-sensitive?

* Does unsafe higher-order
transducers have first-order
decompositions?

ldea: Stack-TT

 1-HTT has difficulty in implementing capture-
avoiding substitution.

* How about extending them with a stack

e f(axy..X,)y;...Yy¥s 2 RHS

where RHS ::=d RHS ... RHS
| Yi
| fx. RHS ... RHS ys

Unsafe substitution =»
De-Bruijn index + Stack-TT

[(Ax.Ay. (Axy))BC J Eval (A |8 |
L ss]
 (AA(AO1)BC B
IS A
e

@] B Eval (@ £ a) ys
— = Eval f (Eval a ys) ys

E & ® Eval (s x) y ys = Eval x ys

(s (s Eval z yys >y - POPI

Even if it’s unsafe...

S > Fa S 2 @Fa
Fy =>b(H(Gy)c) F 2 b(@(H(@ G 2))c)
GXy = ... G 2> ..
Hfy =>d(fe)y Hf =>d(@ (kid2f)e)0
Eval (k1d2 x) y1y2 y3ys

@ = Eval x ylys @
S -)@Fa b a
F =2b(@(H(@GY))c)
G . > @
Hf =d(@fe)y

d{(Gyle)y | |«

Found an error in
the proof during

P rOS & CO n S discussion in the

seminar... X(

Bad: it is hard to make it garbage-free.

— There can be a sequence of significant stack
operations not generating output.

Bad: it may be overly powerful.

Theorem: Stack-TT & Unsafe-n-H

Proof: inverse of stack-TT does not preserve
regularity, while unsafe-n-HTT does.

Summary

* “Safe” and “unsafe” HTT are different.

* Can we transfer results in “safe” case to “unsafe”?
— Can we decompose an unsafe-HTT to 15t order machines?
— Can we show context-sensitivity of the output language?

* See http://www.kmonos.net/pub/tmp/smtt.pdf for
the technical development.

http://www.kmonos.net/pub/tmp/smtt.pdf

