
GRoundTram: An Integrated Framework for Developing Well-Behaved
Bidirectional Model Transformations

Soichiro Hidaka∗, Zhenjiang Hu∗, Kazuhiro Inaba∗§,
Hiroyuki Kato∗ and Keisuke Nakano†

∗National Institute of Informatics, Japan
Email: {hidaka,hu,kinaba,kato}@nii.ac.jp

†University of Electro-Communications, Japan
Email: ksk@cs.uec.ac.jp

Abstract— Bidirectional model transformation is useful for
maintaining consistency between two models, and has many
potential applications in software development including model
synchronization, round-trip engineering, and software evolu-
tion. Despite these attractive uses, the lack of a practical
tool support for systematic development of well-behaved and
efficient bidirectional model transformation prevents it from
being widely used. In this paper, we solve this problem
by proposing an integrated framework called GRoundTram,
which is carefully designed and implemented for compositional
development of well-behaved and efficient bidirectional model
transformations. GRoundTram is built upon a well-founded
bidirectional framework, and is equipped with a user-friendly
language for coding bidirectional model transformation, a
new tool for validating both models and bidirectional model
transformations, an optimization mechanism for improving
efficiency, and a powerful debugging environment for testing
bidirectional behavior. GRoundTram has been used by people
of other groups and their results show its usefulness in practice.

I. INTRODUCTION

Bidirectional model transformation [1–5], being an
enhancement of model transformation with bidirec-
tional capability, is an important requirement in OMG’s
Queries/Views/Transformations (QVT) standard [6]. It de-
scribes not only a forward transformation from a source
model to a target model, but also a backward transformation
showing how to reflect the changes in the target model to
the source model so that consistency between two models
is maintained. Unlike (unidirectional) model transformation
where lots of tools have been developed for supporting
design, validation, and test of model transformation, bidirec-
tional model transformation lacks such useful tools, which
prevents it from being widely used. In fact, new requirements
and challenges are introduced in the context of bidirectional
model transformation.

First and most important, we should be sure that the
bidirectional model transformation behaves exactly as we
want. Unlike unidirectional model transformation, bidirec-
tional model transformation has more complicated behavior

§Current affiliation is Google Inc. Email: kiki@kmonos.net

than unidirectional one. It should be well-behaved in the
sense that both forward and backward transformations are
consistent with each other and satisfy the roundtrip property
[1]. As argued in [2], there exist semantic issues in many
existing tools.

Next, bidirectional model transformations should be com-
positional to reuse existing transformations and construct
bigger ones from smaller ones. As indicated in the con-
clusion in [7], most model transformation languages based
on graph transformations are rule-based, describing direct
relationship between the source and target models. They
are not compositional in the sense that we cannot introduce
intermediate models for gluing model transformations. This
makes them hard to support systematic development of
model transformations in the large [8]. However, compo-
sition comes at the cost of efficiency; many unnecessary
intermediate models might be produced. Therefore, an op-
timization method are required to automatically eliminate
unnecessary intermediate models during execution.

Furthermore, bidirectional model transformation should
be general enough as it is used at various stages of software
development life cycle. It is applied to different models
such as UML diagrams, sequence diagrams, Petri-nets, and
even lower level control/data flow graphs. While visual
frameworks are useful in high level design, general text-
based languages play an important role in developing large-
scale transformations, say, to deal with lower level mapping
or complex code refactoring. Besides, we would expect
to have a set of language-based tools for type checking
(validating) both models and bidirectional model transfor-
mations to remove unnecessary errors before execution, an
efficient execution model, and a tool for testing/debugging
bidirectional behavior. We believe that such language-based
modeling environments play important role in bidirectional
model transformation.

In this paper, we remedy this situation by proposing a
language-based modeling framework called GRoundTram
[9], which is carefully designed and implemented for com-
positional development of well-behaved and efficient bidi-
rectional model transformation at various stages of software

development. Our work is greatly inspired by recent research
on bidirectional languages and automatic bidirectionalization
in the programming language community [10–13]. In par-
ticular, it has been recently shown [14] that a graph query
algebra UnCAL can be fully bidirectionalized. Each graph
transformation in UnCAL has a clear bidirectional semantics
and is guaranteed to be well-behaved.

This paper is about a successful application of the result
of a bidirectional graph query algebra in the programming
community to the construction of a framework for devel-
oping bidirectional model transformation in the software
engineering community. Our main technical contributions
are summarized as follows.

• Well-Behavedness. We propose a novel bidirectional
graph contraction algorithm so that we can build well-
behaved bidirectional model transformations upon the
well-founded bidirectional UnCAL algebra. In fact,
there is a gap between the UnCAL graphs and the
models in model transformation: graphs in UnCAL are
edge-labeled and their equality is defined by bisimula-
tion, while models in model transformation may have
labels on both edges and nodes and their equality is
defined by unique identifiers. We close this gap so that
every UnCAL graph has a bidirectional correspondence
with a model.

• Compositional. We design a UnQL+, a purely func-
tional languages for developing large bidirectional
model transformations in a compositional way. UnQL+

is an extension of the graph query language UnQL [15]
with new additional language constructs for graph
transformation. We show that any UnQL+ program
can be correctly translated to an UnCAL construct
and inefficiency due to intermediate models in the
composition can be automatically eliminated.

• Languages-based IDE. We implement an integrated
development environment GRoundTram, which has a
novel tool for validating both models and bidirec-
tional model transformations, an automatic optimiza-
tion mechanism for improving efficiency, and a pow-
erful debugging environment for testing bidirectional
behavior. The system (including the sources, the doc-
uments, and many application examples) is available
online [9], and has been and is being used by people
of other groups for developing some nontrivial applica-
tions. Their results indicate its usefulness in practice.

II. OVERVIEW OF GROUNDTRAM

Figure 1 shows the basic functions the GRoundTram
system provides.

A. Input

The input to the system is a source model together with its
schema, a transformation described in UnQL+, and a target

Bidirectional

Transformation

Source Model (DOT/UnCAL) Source Schema (KM3)Model Validation Forward TransformationTransformation(UnQL+) Target Schema (KM3)Model TransformationValidationVerified Transformation Target Model(DOT)Graph UpdateUpdated Target Model(DOT)Backward TransformationUpdated Source Model (DOT)Graph UpdateSource Model(DOT)
Figure 1. Overview of GRoundTram

Figure 2. A Class Diagram

model schema. The target model is produced by the forward
transformation.

• Model. Models are represented by general edge-labeled
graphs, which form a general representation of various
models. As a concrete example, consider the class
model diagram in Figure 2. It consists of three classes
and two directed associations, and each class has a
primary attribute. This model can be represented by
the graph where information is moved from nodes to
edges.

• Model Schema (Metamodel). Each model has a struc-
ture. For instance, a class diagram has the following
structure. A class diagram consists of classes and di-
rected associations between classes. A class is indicated
as persistent or non-persistent. It consists of one or
more attributes, at least one of which must be marked
as constituting the classes’ primary key. An attribute
type is of a primitive data type (e.g. String, Integer).
An association specifies an inheritance relation between
two classes. KM3 [16] is used to describe such a model
structure, and its definition can be found in [9].

• Model Transformation. (Forward) Model transforma-
tion is described compositionally in UnQL+, a SQL-
like graph query/transformation language. As an ex-
ample, consider extracting all persistent classes from
the class model $db, and transforming them to ta-
bles by replacing Attributes by Columns . This can
be described compositionally as follows, where the
intermediate model $persistentClass is used in this
composition.

select{tables : $table}where
$persistentClass in

(* select classes *)
(select $class where

{Association.(src|dest).Class : $class} in $db,
{is persistent : {Boolean : true}} in $class),

$table in
(* replace Attribute *)
(replace attrs → $g

by (select{Column : $a}where
{attrs.Attribute : $a} in $persistentClass)

in $persistentClass)

B. Validation

In order to detect errors during development as early
as possible and help users to develop a correct models
and transformations, the GRoundTram system provides two
types of validation mechanisms.

• Model Validation. Conformance of the source and the
target model to their associated schemas can be verified
by the system. In particular after editing the models, it
is important to check that they are in valid states.

• Model Transformation Validation. Correct model
transformations should always generate a target model
conforming to the target schema from any source model
satisfying the source schema.

While the model validation is quite standard, a general
model transformation validation is more challenging but
more useful in developing correct model transformation.
As an instance of simple erroneous transformation, sup-
pose the user made an error writing select $a instead of
select {Column : $a} in the previous example. Its outputs
do not conform to the schema and hence reported by the
system. The check is automatic and static. Users neither
have to provide any test cases by hand nor execute the
transformation for testing; the system automatically finds out
and displays an example of a source model that reveals the
problem (in this case, a class model containing at least one
persistent class).

C. Bidirectional Transformation

The GRoundTram system is unique in its execution of
well-behaved bidirectional transformation, as seen in the
lower part of Figure 1.

• Forward Transformation. After the user specified the
source model and the UnQL+ model transformation,

Figure 3. GUI of GRoundTram

by running the transformation with the model set to
$db variable, the target model is computed. Like the
source model, the target model can also be exported in
the standard DOT format and be edited.

• Backward Transformation. The most distinct fea-
ture of GRoundTram is the automatic derivation of
backward transformations that appropriately propagate
modifications on target models to source graphs. There
is no need to maintain two separate transformations
and to worry about their consistency. Users just write
a forward transformation from one model to another
in a compositional way, and a corresponding backward
transformation is automatically derived.

III. IMPLEMENTATION OF GROUNDTRAM

A. Graphic User Interface

The GRoundTram system combines all the functions as an
integrated framework with a user-friendly GUI (Figure 3).
The user loads a source graph (displayed in the left pane)
and a bidirectional transformation written in UnQL+. Once
they are loaded, forward transformation can be conducted
by pushing the “forward” button (right arrow icon). The
target graph appears on the right pane. User can graphically
edit the target graph and apply backward transformation by
pushing the “backward” button (left arrow icon). Source
graph can be edited as well, of course. User can optionally
specify the source schema and the target schema, and can
run validation by pushing the check button on both panes.
The transformation itself can also be checked.

For ease of debugging/understanding behavior of bidirec-
tional computation between two models, trace information
is instantly displayed between source and target (red part in
Figure 3). If subgraphs on either pane are selected, corre-
sponding subgraphs on the other pane are also highlighted.
This helps users to understand how modification on the
target affects that on the source, and vice versa.

B. System Architecture

Figure 4 depicts the architecture of the system. We provide
a new model transformation language UnQL+, and we ac-

Figure 4. GRoundTram Implementation on Bidirectional UnCAL Engine

cept models that are described by edge-labeled graphs which
are general enough to capture various kinds of models. We
implement the GRoundTram system upon the powerful en-
gine of bidirectional UnCAL, where a set of language-based
tools have been developed: a bidirectional interpreter [14], a
graph and graph transformation verifier [17], an optimizer to
improve efficiency [18], and a checker of valid updates in the
backward transformation [19]. The key contributions in this
implementation are (1) a translation of UnQL+ to UnCAL
to enable use of the engine of bidirectional UnCAL, and (2)
a bidirectional graph contraction algorithm for contracting
bisimilar UnCAL graphs so that a usual model can have a
bidirectional correspondence with an UnCAL graph.

IV. CONCLUDING REMARKS

The GRoundTram system has been fully implemented and
is available online. The system website [9] provides a bunch
of examples, big and small, including the known nontrivial
(bidirectional) model transformation between UML class
diagrams and relational databases.

This work is our first step towards bidirectional model
programming, a linguistic framework to support systematic
development of model transformation programs. In the fu-
ture, we wish to look more into relation between the rule-
based approach and the algebraic and functional approach,
and see how to integrate them to have a more powerful
framework for bidirectional model transformation.

REFERENCES

[1] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and
J. F. Terwilliger, “Bidirectional transformations: A cross-discipline
perspective,” in International Conference on Model Transformation
(ICMT 2009). LNCS 5563, Springer, 2009, pp. 260–283.

[2] P. Stevens, “Bidirectional model transformations in QVT: Semantic
issues and open questions,” in Proc. 10th MoDELS, ser. Lecture Notes
in Computer Science, G. Engels, B. Opdyke, D. C. Schmidt, and
F. Weil, Eds., vol. 4735. Springer, 2007, pp. 1–15.

[3] ——, “A landscape of bidirectional model transformations,” in Gen-
erative and Transformational Techniques in Software Engineering II,
R. Lämmel, J. Visser, and J. a. Saraiva, Eds. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 408–424.

[4] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer, “Informa-
tion preserving bidirectional model transformations,” in Proceedings
of the 10th international conference on Fundamental approaches to
software engineering, ser. FASE’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 72–86.

[5] M. Antkiewicz and K. Czarnecki, “Design space of heterogeneous
synchronization,” in GTTSE ’07: Proceedings of the 2nd Summer
School on Generative and Transformational Techniques in Software
Engineering, 2007.

[6] OMG, “MOF QVT final adopted specification,” http://www.omg.org/
docs/ptc/05-11-01.pdf, 2005.

[7] K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky,
U. Prange, G. Taentzer, D. Varró, and S. Varró-Gyapay, “Model
transformation by graph transformation: A comparative study,” in
MTiP 2005, International Workshop on Model Transformations in
Practice. Springer-Verlag, 2005.

[8] F. Klar, A. Königs, and A. Schürr, “Model transformation in the
large,” in ESEC/SIGSOFT FSE, I. Crnkovic and A. Bertolino, Eds.
ACM, 2007, pp. 285–294.

[9] “The BiG project web site,” http://www.biglab.org/.
[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and

A. Schmitt, “Combinators for bi-directional tree transformations: a
linguistic approach to the view update problem.” in POPL ’05:
ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages, 2005, pp. 233–246.

[11] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi,
“Bidirectionalization transformation based on automatic derivation of
view complement functions,” in 12th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2007). ACM Press,
Oct. 2007, pp. 47–58.

[12] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
A. Schmitt, “Boomerang: resourceful lenses for string data,” in
POPL ’08: ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages, G. C. Necula and P. Wadler, Eds. ACM,
2008, pp. 407–419.

[13] Z. Hu, S.-C. Mu, and M. Takeichi, “A programmable editor for devel-
oping structured documents based on bidirectional transformations,”
Higher-Order and Symbolic Computation, vol. 21, no. 1-2, pp. 89–
118, 2008.

[14] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano,
“Bidirectionalizing graph transformations,” in ACM SIGPLAN Inter-
national Conference on Functional Programming. ACM, 2010, pp.
205–216.

[15] P. Buneman, M. F. Fernandez, and D. Suciu, “UnQL: a query
language and algebra for semistructured data based on structural
recursion,” VLDB Journal: Very Large Data Bases, vol. 9, no. 1,
pp. 76–110, 2000.

[16] F. Jouault and J. Bézivin, “KM3: A DSL for metamodel specifica-
tion,” in Formal Methods for Open Object-Based Distributed Systems.
LNCS 4037, Springer, 2006, pp. 171–185.

[17] K. Inaba, S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “Graph-
transformation verification using monadic second-order logic,” in
Proceedings of the 13th ACM SIGPLAN international conference on
Principles and practice of declarative programming (PPDP 2011),
Odense, Denmark, 2011.

[18] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K. Nakano,
and I. Sasano, “Marker-directed Optimization of UnCAL Graph
Transformations,” in Proceediings of 21st International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR
2011), Odense, Denmark, 2011.

[19] K. Nakano, S. Hidaka, Z. Hu, K. Inaba, and H. Kato, “Simulation-
based graph schema for view updatability checking of graph
queries,” GRACE Center, National Institute of Informatics, Tech.
Rep. GRACE-TR11-01, May 2011.

