
Optimal Budget Allocation:
Theoretical Guarantee and Efficient Algorithm

Tasuku Soma TASUKU SOMA@MIST.I.U-TOKYO.AC.JP

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, and
JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, 101-8430

Naonori Kakimura KAKIMURA@GLOBAL.C.U-TOKYO.AC.JP

College of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902

Kazuhiro Inaba KINABA@GOOGLE.COM

Google Inc.

Ken-ichi Kawarabayashi K KENITI@NII.AC.JP

National Institute of Informatics, JST, ERATO, Kawarabayashi Project, Tokyo, 101-8430

Abstract
We consider the budget allocation problem over
bipartite influence model proposed by Alon et
al. (Alon et al., 2012). This problem can be
viewed as the well-known influence maximiza-
tion problem with budget constraints.

We first show that this problem and its much
more general form fall into a general setting;
namely the monotone submodular function max-
imization over integer lattice subject to a knap-
sack constraint. Our framework includes Alon et
al.’s model, even with a competitor and with cost.

We then give a (1 − 1/e)-approximation
algorithm for this more general problem.
Furthermore, when influence probabili-
ties are nonincreasing, we obtain a faster
(1 − 1/e)-approximation algorithm, which runs
essentially in linear time in the number of nodes.
This allows us to implement our algorithm up to
almost 10M edges (indeed, our experiments tell
us that we can implement our algorithm up to 1
billion edges. It would approximately take us
only 500 seconds.).

1. Introduction
Domingos and Richardson (Domingos & Richardson,
2001; Richardson & Domingos, 2002) introduced viral

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

marketing, which is a cost-effective marketing strategy that
promotes products by giving “free” or “discounted” items
to a selected group of highly influential individuals, in
the hope that through the word-of-mouth effects, a large
number of product adoption will occur. In the same pa-
pers, Domingos and Richardson (Domingos & Richardson,
2001; Richardson & Domingos, 2002) considered the fol-
lowing problem: Suppose we have data on a social net-
work, with estimates for the extent to which individuals
influence one another, and we would like to market a new
product that hopefully will be adopted by a large fraction
of the network. How should we choose a few “influential”
members of the network that can “trigger” a cascade of in-
fluence? This problem, called influence maximization, is to
find a small set of the most influential individuals (which
is sometimes called a seed node set) in a social network
so that their aggregated influence in the network is maxi-
mized. The seminal work by Kempe, Kleinberg and Tar-
dos (Kempe et al., 2003) provides the first systematic study
of influence maximization as a combinatorial optimization
problem. The influence maximization problem further mo-
tivated the research community to conduct extensive stud-
ies on various aspects of the influence maximization prob-
lems (e.g., (Chen et al., 2010; 2009)).

Previous work mentioned so far has only focused on the
selection of a subset of influencing seeds. But there is one
more important factor we have to consider in the context of
an algorithmic marketing approach; namely Budgets. Cer-
tainly one of the major decisions in a marketing plan deals
with the allocation of a given budget among media channels
such as TV, newspaper, and webs, in order to maximize the
impact on a set of potential customers.

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

This prompts Alon et al. (Alon et al., 2012) to consider
the following influence maximization problem with bud-
get constraints (which is called a (source-node) bipartite
influence model). First, we may model as a bipartite graph
in which one side is the set of possible marketing chan-
nels, and the other is the population of customers. An
edge between a channel i and a customer j indicates that
i may influence j with some probability that depends on
the budget allocated to i. Formally, the model consists
of a bipartite graph G = (S, T ;E), where S and T are
collections of source nodes and target nodes, respectively,
and E ⊆ S × T is an edge set. Each source node s has
a capacity c(s) ∈ Z+ and probabilities p

(i)
s ∈ [0, 1] for

i = 1, . . . , c(s). Each source node s will be allocated a
budget b(s) ∈ {0, 1, . . . , c(s)} such that

∑
s∈S b(s) ≤ B,

where B ∈ Z+ denotes a total budget capacity. If a source
node s is allocated a budget of b(s), the node s makes b(s)
independent trials to activate each neighboring target node
t. The probability that t is activated by s in the ith trial is
p
(i)
s . That is, the probability that t becomes active is

1−
∏

s∈Γ(t)

b(s)∏
i=1

(1− p(i)s), (1)

where Γ(t) denotes the set of source nodes that is adjacent
to t. The objective of this model is to distribute the budget
among the source nodes respecting the capacities of nodes,
and to maximize the expected number of target nodes that
become active. We call this problem the budget allocation
problem over bipartite influence model.

Alon et al. (Alon et al., 2012) devised a (1 −
1/e)-approximation algorithm for this problem. Here, for
a positive number α ≤ 1, an α-approximation algorithm
is one returning a feasible solution whose value is at least
α times the optimal value. Their algorithm is essentially
greedy with some preprocess (i.e., enumerating all the pos-
sible allocations with only three source nodes). The algo-
rithm motivates us to consider the following issues.

1. The scalability. Their algorithm adapts a greedy proce-
dure. Therefore, the time complexity is expensive, be-
cause in each iteration, the greedy procedure searches
all the nodes in the graph as a potential candidate for
the next seed node. As a result, the algorithm entails at
least quadratic number of steps in terms of the number of
nodes. In fact, not only due to this issue, but also due to
the expensive preprocess, their algorithm would not work
for more than 5K edges, say1.

2. Submodularity. For a finite set S, we say that a set
function f : 2S → R is submodular if it satisfies

1Indeed, as far as we are aware, nobody has implemented their
algorithm.

f(X)+f(Y) ≥ f(X∩Y)+f(X∪Y) for all X,Y ⊆ S.
A set function f is monotone if f(X) ≤ f(Y) for all
X,Y with X ⊆ Y . Submodularity often arises in ana-
lyzing influence maximization in a social network (e.g.,
(Chen et al., 2010; 2009; Kempe et al., 2003)), and guar-
antees why a greedy algorithm finds a nearly optimal so-
lution (Fisher et al., 1978). In the budget allocation prob-
lem, one may select a node multiple times, and hence
the objective function is not a set function. As suggested
by Alon et al., however, their algorithm is similar to the
one for maximizing a monotone submodular set function
subject to a knapsack constraint (Sviridenko, 2004), and
hence it seems to us that submodularity can explain the
problem setting.

3. Extending the framework. The budget allocation problem
needs to be extended to adopt more complicated real set-
tings. Alon et al. only considered the case when cost to
allocate a budget is the same for all sources. Since each
media channel such as TV, newspaper, and webs has dif-
ferent scales, it would be more natural to consider differ-
ent costs for each channel. Moreover, a market may often
have a competitor against us, and we have to change our
allocation according to the competitor’s decision.

Our Contribution

In this paper, we clarify all the issues above. Let us first
consider the second and the third issues. To deal with
choosing a node multiple times in the model, we extend
a set function to a function over the integer lattice, i.e., the
set of the integer vectors in the Euclidean space. We de-
fine a submodular function over integer lattice, that is, a
function f satisfying f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y)
for all integer vectors x and y, where x ∨ y and x ∧ y de-
note the coordinate-wise maxima and minima, respectively.
This definition generalizes submodularity of a set function,
because if we restrict the domain to the unit hypercube then
the submodularity can be identified with one for a set func-
tion. Note that a function f over integer lattice is usually
supposed to be given as an evaluation oracle, a black box
that computes f(x) for any integer vector x.

A submodular set function has been studied extensively
in combinatorial optimization. There are combinatorial
polynomial-time algorithms for minimizing a submodular
set function (see (Fujishige, 2005; Iwata, 2008) for details).
It is known in (Fujishige, 2005) that these minimization al-
gorithms can cope with submodular functions over integer
lattice if bounded, which can be identified with a ring fam-
ily on some ground set with pseudo-polynomial size, and
hence the minimization problem can be solved in pseudo-
polynomial time. On the other hand, maximizing a sub-
modular function over integer lattice has been done for only
special classes with applications to multi-unit combinato-

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

rial auctions (Shioura, 2009).

Having defined submodular functions over integer lattice,
our main theoretical contributions in this paper are the fol-
lowing.

• We introduce a general framework using a submodu-
lar function over integer lattice. We consider the prob-
lem of maximizing a monotone submodular function sub-
ject to a knapsack constraint, which is a natural exten-
sion of maximizing a submodular set function with con-
straints (Nemhauser et al., 1978; Sviridenko, 2004).

We then devise a (1 − 1/e)-approximation algorithm for
this problem. Since the budget allocation problem is
shown to fall into the problem, this gives a solution of
the second issue.

• We show that our framework includes more generalized
models in which the source costs are nonuniform and
there is a competitor. Our first result implies that the
model can also be solved in polynomial time within (1−
1/e) approximation factor. The result can be compared to
some results in algorithmic game theory (Bharathi et al.,
2007; Borodin et al., 2010; Budak et al., 2011).

In the competitor model, we aim at allocating our bud-
get against a competitor’s allocation, which is known in
advance. Such a situation is practical when we consider
advertising (i.e., imagine television commercial messages.
Companies can prepare their strategies based on competi-
tors’ information). This competitor model also considers
the case when the competitor spreads information in ad-
vance (i.e., the competitor spreads the information even be-
fore we start spreading our information). This means that
we can take “start-up delay” against the competitor into ac-
count.

It should be noted that our submodular framework admits
a potential applicability to other problems than the budget
allocation problem. In fact, classical combinatorial opti-
mization problems such as the maximum coverage and fa-
cility location can be naturally generalized to our frame-
work over integer lattice. Such problems can be applied to
text summarization and sensor placement in machine learn-
ing. These applications will be discussed in Section 3.3.

Let us now consider the first issue. Relatively little work
has been done on improving the quadratic nature of the
greedy algorithm, even for the influence maximization
problem without the budget constraint. Perhaps the most
notable work is (Leskovec et al., 2007), where submodular-
ity is exploited to develop an efficient heuristic algorithm,
based on “lazy-forward” optimization in selecting seeds.
The idea is that the marginal gain of a node in the current
iteration cannot be much better than its marginal gain in

the previous iterations. Then this algorithm exploits sub-
modularity of influence spread function to reduce the num-
ber of Monte-Carlo simulations. Empirical results show
700 times faster than the original greedy algorithm, how-
ever it still takes a few hours to compute a solution for
graphs with tens of thousands of vertices. Subsequently,
various heuristics (Chen et al., 2009; 2010; Jiang et al.,
2011) have been proposed to avoid using Monte-Carlo sim-
ulations, however, these algorithms do not guarantee any
theoretical guarantee. Recently, a theoretically fast algo-
rithm is proposed by (Borgs et al., 2014).

In this paper, we deal with the budget allocation problem
with nonincreasing influence probabilities. Let us observe
that this problem setting often appears in the real world. In-
deed, the impact of advertisement is supposed to be nonin-
creasing. Using the submodularity of the budget allocation
problem, we obtain a faster (1− 1/e)-approximation algo-
rithm, which runs essentially in linear time in the number
of nodes. This allows us to implement our algorithm up
to almost 10M edges (indeed, our experiments tell us that
we can implement our algorithm up to 1 billion edges. It
would approximately take us only 500 seconds.). As far as
we are aware, this is perhaps the first case that the greedy
(1 − 1/e)-approximation algorithm for the submodularity
scales up to this large size.

The rest of the paper is organized as follows. In Section
2, we design a (1 − 1/e)-approximation algorithm for the
monotone submodular function maximization over integer
lattice subject to a knapsack constraint. In Section 3, we ap-
ply it to the budget allocation problems and other problems.
Section 4 describes faster algorithms for the budget alloca-
tion problem assuming that influence probabilities are non-
increasing. Numerical experiments are presented in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. Submodular Maximization over Integer
Lattice subject to Knapsack Constraint

Let S be a finite set. We say that a function f over in-
teger lattice is submodular if it satisfies f(x) + f(y) ≥
f(x∨ y) + f(x∧ y) for all x and y, where x∨ y and x∧ y
denote the coordinate-wise maxima and minima, respec-
tively, i.e., (x∨y)(s) = max{x(s), y(s)} and (x∧y)(s) =
min{x(s), y(s)}. A function f is monotone if f(x) ≤ f(y)
for all x and y with x ≤ y. We assume that f(0) = 0 with-
out loss of generality.

Let c ∈ ZS
+, w ∈ RS

+ and B be a nonnegative integer.
Consider the problem to find b ∈ ZS

+ maximizing a mono-
tone submodular function f subject to 0 ≤ b ≤ c and
w · b :=

∑
s∈S w(s)b(s) ≤ B. We call this problem the

monotone submodular function maximization over integer
lattice subject to a knapsack constraint. We may assume

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

without loss of generality that w(s) > 0 for each s in S.

This problem is a generalization of the problem of max-
imizing a monotone submodular set function subject to a
knapsack constraint. Indeed, if c is the all-one vector, then
f can be identified with a monotone submodular set func-
tion. In this case, we can find a (1 − 1/e)-approximate
solution in polynomial time (Sviridenko, 2004). The main
result of this section is the following for a general case.
Theorem 2.1. For the monotone submodular function
maximization over integer lattice subject to a knapsack
constraint, we can find a (1−1/e)-approximate solution in
O(B5|S|4θ) time, where θ is the running time of an evalu-
ation oracle for f .

Note that the complexity is also bounded by using cmax,
the maximum entry of c, instead of B. The bound is
O(c4max|S|5θ), and this corresponds to the bound by Sviri-
denko (Sviridenko, 2004) for submodular set function max-
imization subject to a knapsack constraint, where cmax =
1.

We here summarize basic properties for submodular func-
tions over integer lattice. The marginal return with respect
to a feasible solution b, s ∈ S and k ∈ Z+ is the value
f(b+kχs)−f(b), where χs is the characteristic vector of s.
We denote this value by ∆(b, s, k). The average marginal
return with respect to a feasible solution b ∈ ZS

+, s ∈ S and
k ∈ Z+ is the value ∆(b, s, k)/(w(s)k), which we denote
by δ(b, s, k).

It is well-known that for a set function f , submodularity is
equivalent to the diminishing marginal return property, i.e.,
f(X∪{s})−f(X) ≥ f(Y ∪{s})−f(Y) for all X ⊆ Y ⊆
S and s 6∈ Y . However, submodularity over integer lattice
does not imply the diminishing marginal return property:

f(b+ χs)− f(b) ≥ f(b+ 2χs)− f(b+ χs) (2)

for arbitrary b and s ∈ S. On the other hand, a weaker
version of this inequality does hold, whose proof can be
found in the extended version of this paper (Soma et al.,
2014).
Lemma 2.2. Let f be a monotone submodular function
over integer lattice. For arbitrary s ∈ S, k ∈ Z+, x and y
with x ≤ y, we have

f(x ∨ kχs)− f(x) ≥ f(y ∨ kχs)− f(y). (3)

The (positive) support of b, denoted by supp+(b), is the set
of elements s in S such that b(s) > 0.
Lemma 2.3. Let f be a submodular function. For arbitrary
x and y, we have

f(x ∨ y) ≤ f(x) +
∑

s∈supp+(y−x)

(f(x ∨ y(s)χs)− f(x)) .

(4)

2.1. (1− 1/e)-Approximation Algorithm

We next describe our approximation algorithm. In our al-
gorithm, we first enumerate every feasible solution b0 such
that |supp+(b0)| ≤ 3. The number of such solutions is
O(B3|S|3). For each feasible solution b0, the algorithm
increases each component of b0 in a greedy way using
GREEDYPROCEDURE, whose description is presented in
Algorithm 1, and obtains a feasible solution b. Finally, the
algorithm returns the best one among the obtained solu-
tions. Since Algorithm 1 requires O(B2|S|θ) time, the to-
tal complexity is O(B5|S|4θ). Note that the correctness of
our algorithm is omitted due to the space limitation, which
can be found in the extended version (Soma et al., 2014).

Algorithm 1 GREEDYPROCEDURE

Input: a feasible solution b0
1: Let b := b0.
2: Let Q := {(s, k) : s ∈ S and 1 ≤ k ≤ c(s)− b(s)}.
3: while w · b < B and Q 6= ∅ do
4: Find s and k maximizing the average marginal re-

turn δ(b, s, k) among (s, k) ∈ Q.
5: if w · b+ w(s)k ≤ B then
6: Let b(s) := b(s) + k.
7: Remove all pairs (s, l) such that b(s) + l > c(s)

from Q.
8: else
9: Remove (s, k) from Q.

10: end if
11: end while

Let us leave some remarks on our algorithm. Although
the worst case complexity of our algorithm is quite expen-
sive, Algorithm 1 can be accelerated using a “lazy evalua-
tion” technique given in (Minoux, 1978), and thus it runs
more efficiently in practice. Also, there is another ap-
proach to reduce the time complexity at the expense of a
good approximation ratio. We can apply ideas similar to
those for maximizing a submodular set function to make
practical simpler algorithms with somewhat worse approx-
imation factors (Lin & Bilmes, 2010). For example, as in
(Alon et al., 2012), if we enumerate solutions with only one
positive support before performing GREEDYPROCEDURE,
then we can find a 1/2(1 − 1/e)-approximate solution in
O(B2|S|2θ) time.

2.2. Faster Algorithm under Diminishing Marginal
Return Property

We conclude this section with designing a faster (1 −
1/e)-approximation algorithm if f satisfies the diminish-
ing marginal return property (2) and a cost w is uniform,
i.e., w(s) = 1 for any s ∈ S. Note that even if f ad-
mits the properties, the problem is still NP-hard and (1 −
1/e)-approximation is best possible unless P=NP (Feige,

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

1998).

We execute GREEDYPROCEDURE with b0 := 0. By (2), we
have δ(b, s, k) ≤ δ(b, s, 1) for arbitrary b, s and k. Hence
GREEDYPROCEDURE always chooses k = 1 for each it-
eration. Furthermore, the procedure never fails to increase
the tentative solution because w is uniform. Therefore, by
following a similar argument to the proof of Theorem 2.1,
we can show that the output is a (1 − 1/e)-approximate
solution. The running time follows from the fact that b in-
creases B times and each iteration requires O(|S|θ) time to
find s maximizing δ(s, b, 1). Thus the following holds.

Theorem 2.4. For the submodular function maximization
over integer lattice, if f admits the diminishing marginal
return property and w is uniform, then we can find a (1 −
1/e)-approximate solution in O(B|S|θ) time.

3. Applications of Submodular Maximization
In this section, we focus on the budget allocation prob-
lem (as defined in Section 1), and we show that more gen-
eralized models fall into our framework. We also mention
applications to other problems such as text summarization
and sensor placement in Section 3.3.

3.1. Budget Allocation Problem with Nonuniform Costs

We extend to the bipartite influence model with nonuniform
costs. That is, in addition to an instance of the budget al-
location problem, each source node s has a cost w(s) > 0.
The objective is to distribute the budget respecting the ca-
pacities of nodes and

∑
s∈S w(s)b(s) ≤ B such that the

expected number of activated nodes is maximized. We call
this problem the budget allocation problem over bipartite
influence model with nonuniform costs.

In the model, the probability that t becomes active is equal
to (1). Let ft be a function of an allocation vector b defined
as (1). We note that we define ft(b) = −∞ if b does not
satisfy 0 ≤ b ≤ c. It is easy to see that the function ft is
monotone for each t ∈ T . In addition, the following lemma
asserts that ft is submodular.

Lemma 3.1. For any t ∈ T , the function ft is submodular.

Proof. It suffices to show gt(b) :=
∏

s∈Γ(t)

∏b(s)
i=1(1−p

(i)
s)

is supermodular. Let α := gt(x ∧ y), β := gt(x)/α and
γ := gt(y)/α. We can easily check that α, β, γ ∈ [0, 1] and
gt(x∨ y) = αβγ. Then we obtain gt(x∨ y) + gt(x∧ y)−
gt(x)− gt(y) = α(βγ+1− β− γ) = α(1− β)(1− γ) ≥
0.

Since the expected number of activated nodes for an al-
location b is equal to f(b) :=

∑
t∈T ft(b), the expected

number is also submodular as a function of b. The fol-

lowing result is now immediate from Theorem 2.1, since
θ = O(B|S||T |).
Theorem 3.2. A (1 − 1/e)-approximate solution for the
budget allocation problem with nonuniform costs can be
found in O(B6|S|5|T |) time.

3.2. Budget Allocation Problem with a Competitor

We extend the budget allocation problem with nonuniform
costs to the two-player case. In the model, there is a
competitor against an advertiser. The competitor allocates
his/her budget to S in advance, and will try to influence
target nodes at the same time as the advertiser’s trials. Un-
der this situation, the advertiser aims at allocating a budget
to source nodes to maximize the expected number of tar-
get nodes influenced by his/her trials. We suppose that the
trials of the two players are made in a discrete time step:
At each time step i, first the competitor makes the ith trial,
and then the advertiser makes the ith trial. The trials will
be repeated until both budget allocations run out.

Thus each target node t of T has the following three states:
inactive, positively active (influenced by an advertiser), and
negatively active (influenced by a competitor). Since an ad-
vertiser is a follower, we assume that it has a chance to ac-
tivate positively both an inactive node and a negatively ac-
tivated node. Note that when a node is already influenced
by the competitor, the probability to activate it should be
smaller than one to activate an inactive node. In contrast,
we suppose that the competitor can activate an inactive
node, but not a positively active node. Thus the model is
progressive with respect to positively active nodes.

More specifically, the model is defined as follows. For a
bipartite graph G = (S, T ;E), an advertiser is given a
capacity c(s), a cost w(s) and two probabilities p

(i)
s and

q
(i)
s with q

(i)
s ≤ p

(i)
s for i = 1, . . . , c(s) for each s ∈ S.

In addition, a competitor has already allocated his budget
to source nodes, which is denoted by b̃(s) for each source
node s ∈ S. The competitor also has probabilities p̃(i)s for
i = 1, . . . , b̃(s) for each s in S. The probability that t is
activated by s in the ith trial depends on the status of t as
follows. If t is inactive, then the probabilities that t is posi-
tively/negatively activated are p

(i)
s and p̃

(i)
s , respectively. If

t is already negatively active, then the probability that t is
positively activated is q(i)s . In this setting, we aim at maxi-
mizing the expected number of positively active nodes. For
t ∈ T and k with 1 ≤ k ≤ 1+maxs∈S b̃(s), let Et,k be the
event that t becomes negatively active in the kth trial (when
k = 1 +maxs∈Γ(t) b̃(s), Et,k means the event that t never
become negatively active). Conditioned on Et,k, the prob-
ability that t becomes positively active is

ft,k(b) = 1−
∏

s∈Γ(t)

min{b(s),k−1}∏
i=1

(
1− p(i)s

) b(s)∏
i=k

(
1− q(i)s

)
.

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

The probability that t becomes positively active equals∑
k λt,kft,k(b), where λt,k := Pr(Et,k). Therefore,

the expected number of positively active nodes, denoted
by f(b), is equal to

∑
t∈T

∑
k λt,kft,k(b). Similarly to

Lemma 3.1, ft,k is shown to be monotone and submodular
for any t and k. Since f is a nonnegative linear combina-
tion of ft,k’s, f is also monotone and submodular. Thus
this problem can be reduced to the monotone submodular
function maximization over integer lattice.

Theorem 3.3. For the budget allocation problem with a
competitor, the objective function is monotone and submod-
ular. Thus we can find a (1− 1/e)-approximate solution in
polynomial time.

3.3. Other Applications

In this section, we present applications of our framework
to problems other than the budget allocation problems.
Submodular set functions arise in several applications (see,
e.g., (Krause & Golovin, 2014)). Such applications can
naturaly be extended to our framework allowing multiple
choices.

Maximum Coverage Let us first see that our frame-
work includes a generalization of the well-known maxi-
mum coverage problem. In the maximum coverage prob-
lem, we are given a finite set V and a family of subsets
C1, . . . , Cm in V , and the objective is to choose k sub-
sets from C1, . . . , Cm so that the number of the covered
elements in V is maximized. Here consider covering func-
tions pj : Z+ → 2V (j = 1, . . . ,m), each of which is
monotone, and we would like to maximize the number of
the elements covered by pj’s, i.e., | ∪m

j=1 pj(bj)|, subject
to

∑m
j=1 bj ≤ k. Note that the covering function pj cor-

responds to the situation where choosing j multiple times
makes the covered set larger. This problem clearly gener-
alizes the maximum coverage problem, that corresponds to
the case when we can only choose each pj at most once. It
is not difficult to see that the objective function is a mono-
tone submodular function over integer lattice, and therefore
a (1 − 1/e)-approximate solution can be found in polyno-
mial time by Theorem 2.1.

Facility Location We are given a set V of facilities, and
we aim at deciding how large facilities are opened up in
order to serve a set of m customers, where we represent
scale of facilities as integers 0, 1, . . . , c (“0” means we do
not open a facility). If we open up a facility j of scale
bj , then it provides service of value pi,j(bj) to customer i,
where pi,j : Z+ → R (j = 1, . . . ,m) is a given mono-
tone function. We suppose that each customer chooses the
opened facility with highest value. That is, when we as-
sign bj to each facility j, the total value provided to all
customers is given by f(b) =

∑m
i=1 maxj∈S pi,j(bj). It

turns out f is monotone and submodular over integer lat-

tice. Thus a (1 − 1/e)-approximate solution can be found
in polynomial time by Theorem 2.1.

Sensor Placement In a standard sensor placement sce-
nario, we can put at most one sensor in each spot to max-
imize the area covered by sensors. Here we can con-
sider a more general problem where to place sensors with
some specified power in a field subject to budget constraint,
where the area covered by a sensor depends on its power
setting. This problem is almost equivalent to the maxi-
mum coverage problem with multiple choices as discussed
before, and hence we can apply our approximation algo-
rithm for the problem. A similar sensor placement problem
where we can put two kinds of sensors in each spot is stud-
ied in (Singh et al., 2012).

Text Summarization The objective of text summariza-
tion is to find a small set of words that summarizes the
feature of a given text as well as possible. Recently, it is
shown that a variety of objective functions used in summa-
rization admits submodularity and that submodular-based
approaches outperform in practice (Lin & Bilmes, 2011).
For example, in the concept-based summarization (Fila-
tova & Hatzivassiloglou, 2004), we are to find a subset S
of sentences maximizing the total credit of concepts cov-
ered by S, i.e., maximize

∑
i∈Γ(S) ci, where Γ(S) is the

set of the concepts covered by S and ci ∈ R+ is the credit
of a concept i. Indeed, this objective function is submodu-
lar. We now extend the submodular summarization model
to the one that incorporates “confidence” of sentences, i.e.,
we can choose a sentence in various confidence level like
“low”, “mid” or “high” rather than just choose or not. As in
the maximum coverage, let us introduce a monotone cov-
ering function pj for each sentence j. Then the objective
function of the extended model is defined to be the total
credit f(b) =

∑
ci, where the sum is taken over concept

i covered by ∪jpj(bj). Again, this objective function is
a monotone submodular function over integer lattice, and
hence we can use our approximation algorithm for the ex-
tended model.

4. Faster Algorithm for Budget Allocation
with Nonincreasing Influence Probabilities

In this section, we assume the budget allocation problem
has nonincreasing influence probabilities, i.e., for each
s ∈ S, we have p

(i−1)
s ≥ p

(i)
s for i = 2, . . . , c(s). The

property captures the real-world phenomena of marketing.
In our model, multiple trials to activate target nodes can be
viewed as discrete-time steps. Thus it is natural to decrease
effectiveness of an advertisement with time.

Lemma 4.1. Under the nonincreasing influence proba-
bilities, the objective function f admits the diminishing
marginal return property.

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

By Theorem 2.4, performing GREEDYPROCEDURE with
b0 := 0 yields a (1−1/e)-approximate solution. Algorithm
2 describes an implementation of the algorithm in Theorem
2.4 with an additional trick to compute the value of f effi-
ciently. Here we use auxiliary variables φ(s) and φ(t) for
each s ∈ S and t ∈ T . During execution of the algorithm,
φ(t) traces the value

∏
s∈Γ(t)

∏b(s)
i=1(1 − p

(i)
s) and φ(s) is

always equal to
∑

t∈Γ(s) φ(t). Thus f(b + χs) − f(b) =∑
t∈Γ(s)(φ(t)− (1− p

(b(s)+1)
s)φ(t)) = p

(b(s)+1)
s φ(s). Ev-

idently the algorithm runs in O(B(|S|+ |T |+ |E|)) time.
Summarizing the arguments, we have the following theo-
rem.

Theorem 4.2. For the budget allocation problem with
nonincreasing influence probabilities, we can find a (1 −
1/e)-approximate solution in O(B(|S|+ |T |+ |E|)) time.

Similarly to Algorithm 1, we can apply the lazy evaluation
technique to Algorithm 2 to accelerate in practice. We use
this speeding up technique in our experiments.

Algorithm 2 SIMPLEGREEDYPROCEDURE

1: Let b := 0, and let φ(t) := 1 for each t ∈ T and
φ(s) := d(s) for each s ∈ S.

2: for i = 1 to B do
3: Choose s maximizing p

(b(s)+1)
s φ(s).

4: Let b(s) := b(s) + 1.
5: Let φ(t) := (1− p

(b(s))
s)φ(t) for each t ∈ Γ(s) and

let φ(s) :=
∑

t∈Γ(s) φ(t) for each s ∈ S
6: end for
7: return b

In addition, under a similar assumption, we design a faster
algorithm for the budget allocation problem with a com-
petitor. Let us assume that p(i−1)

s ≥ p
(i)
s and q

(i−1)
s ≥ q

(i)
s

for arbitrary s ∈ S and i with 2 ≤ i ≤ c(s). Then ft,k
admits the diminishing marginal return property for each t
and k, and hence so does f . Therefore, a greedy algorithm
similar to Algorithm 2 computes a (1 − 1/e)-approximate
solution. A pseudocode description of the greedy algorithm
that runs in O(B2|E|) time is presented in the extended
version (Soma et al., 2014).

Theorem 4.3. If p(i)s and q
(i)
s are nonincreasing and the

cost is uniform, then we can find a (1 − 1/e)-approximate
solution for the budget allocation problem with a competi-
tor in O(B2|E|) time.

5. Experiments
We now verify our theoretical results by implementing Al-
gorithm 2 for the budget allocation problem over bipartite
influence model with nonincreasing influence probabilities.

To demonstrate that the greedy choice indeed performs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600 700 800 900 1000

In
fl
u
e
n
c
e
d
 n

o
d
e
s
:
f
(b

)

Budget: B

Greedy (Ours)
Degree-prob

Degree
Random

Figure 1. P=1.0, Yahoo! Bidding Data

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

In
fl
u
e
n
c
e
d
 n

o
d
e
s
:
f
(b

)

Budget: B

Greedy (Ours)
Degree-prob

Degree
Random

Figure 2. P=0.1, Yahoo! Bidding Data

well, the expected number f(b) of activated nodes by the
greedy choice is compared to that by other strategies. The
“degree” strategy chooses the top B highest degree nodes.
This strategy is based on the intuition that the high degree
nodes should have high influence. In many variants of in-
fluence maximization problems, this high-degree-selection
strategy is reported not to outperform the greedy choice
(Kempe et al., 2003; Budak et al., 2011). The “degree-
prob” strategy takes the influence probability into account,
in addition to the degree condition. It chooses the top B
nodes with the largest expected number of influences, i.e.,
degree multiplied with the probability. The “random” strat-
egy is a baseline choice that uniformly randomly chooses
B nodes.

Figures 1 and 2 are our simulation results on Yahoo! Search
Marketing Advertiser Bidding Data (Yah). It is a bipar-
tite graph between 1,000 search keywords and 10,475 ac-
counts, where each edge represents one “bid” to advertise-
ment on the keyword. Note that this data originally does
not represent influence relationship, but it encodes the in-
formation “who is interested in what” relationship in the
real world. The motivation of the experiment is to find a
good choice of “what” set that maximizes the influenced
“who”s, that is, a set of keywords that is maximally associ-
ated to advertisers. This would be useful for the publisher
to promote keywords to advertisers. For the purpose, we
only use the graph, although the original data contains bid
prices or time data. The graph has 52,567 edges (repre-
senting ‘who bid at least once to what’ relation). The prob-
ability p

(i)
s of influence is assigned as follows. Let P be

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

0

200000

400000

600000

800000

1000000

1200000

1400000

0 100 200 300 400 500 600 700 800 900 1000

In
fl
u
e
n
c
e
d
 n

o
d
e
s
:
f
(b

)

Budget: B

Greedy (Ours)
Degree-prob

Degree
Random

Figure 3. P=1.0, Synthesized Graph

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500 600 700 800 900 1000

In
fl
u
e
n
c
e
d
 n

o
d
e
s
:
f
(b

)

Budget: B

Greedy (Ours)
Degree-prob

Degree
Random

Figure 4. P=0.1, Synthesized Graph

a parameter. For each s, we have set p(1)s a random value
between 0 and P . Then, p(i+1)

s is set to p
(i)
s ·X , where X is

a random value between 0 and 1, generated for each i and
s. Figures 1 and 2 show the results on P = 1 and P = 0.1
cases.

In order to implement our algorithms for larger scale
graphs, we have also run our experiments on artificially
generated graphs. Figures 3 and 4 are simulation results
on synthesized graphs with |S| = 200, 000 and |T | =
2, 000, 000 nodes with around 8, 000, 000 edges between
them. The graphs are generated so that the degree distribu-
tion of the source nodes obey the power law of γ = 2.0.
After assigning the degrees to each source node s, it is con-
nected to deg(s) nodes uniformly chosen from T . Allo-
cation of 1, 000 budgets in the greedy algorithm took 3.36
seconds (including the graph generation time) in average
on a machine with Xeon E5-2690 2.9GHz CPU and 64GB
memory.

We have also implemented the algorithm when a competi-
tor exists. We have started with the situation that the com-
petitor already allocated 100 budgets by the “degree” strat-
egy. The probability q

(i)
s to turn over a node already in-

fluenced by the competitor is set to 0.2 · p(i)s . Figures 5
and 6 summarize the results in the competitive setting on
the Yahoo! Bidding data graph. The “competitor” line in
the figures shows the number of nodes kept influenced by
the competitor against our greedy algorithm.

In all the configurations, the greedy algorithm out-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600 700 800 900 1000

In
fl
u
e
n
c
e
d
 n

o
d
e
s
:
f
(b

)

Budget: B

Greedy (Ours)
Greedy-unaware (Ours)

Degree-prob
Degree

Random
Competitor

Figure 5. P=1.0, against a competitor

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

In
fl
u
e
n
c
e
d
 n

o
d
e
s
:
f
(b

)

Budget: B

Greedy (Ours)
Greedy-unaware (Ours)

Degree-prob
Degree

Random
Competitor

Figure 6. P=0.1, against a competitor

performed degree-based strategies. “Degree-prob” also
showed a comparable result on the synthesized graphs. In-
terestingly, the “greedy-unaware” strategy in the competi-
tive setting, which is to allocate budgets greedily without
taking the existence of the competitor into account at all, is
showing a very close performance to the competitor-aware
one. This may be explained as follows; except for the ex-
treme situation that p(i)s is very high and q

(i)
s is very low,

a highly influential set of source nodes would be taken by
the advertiser, even after some part of it is grabbed by the
competitor.

6. Conclusion
In this paper, we have defined a submodular function over
integer lattice, extending a submodular set function, and in-
troduced the problem of maximizing a monotone submod-
ular function subject to knapsack constraint. This problem
includes the budget allocation problem (Alon et al., 2012)
and more general budget allocation problems with nonuni-
form costs and a competitor. Also, this problem has appli-
cations to sensor placement and text summarization. We
have devised a (1 − 1/e)-approximation polynomial-time
algorithm for the problem. In addition, based on the dimin-
ishing marginal return property, we have devised a faster al-
gorithm for the budget allocation problem under some nat-
ural scenario, and have carried out numerical experiments.

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

References
Yahoo! webscope dataset: ydata-ysm-advertiser-bids-

v1 0. http://research.yahoo.com/Academic_
Relations.

Alon, N., Gamzu, I., and Tennenholtz, M. Optimizing budget
allocation among channels and influencers. In Proceedings
of the 21st International Conference on World Wide Web, pp.
381–388, 2012.

Bharathi, S., Kempe, D., and Salek, M. Competitive influence
maximization in social networks. In Proceedings of the 3rd
International Conference on Internet and Network Economics,
WINE’07, pp. 306–311, 2007.

Borgs, C., Brautbar, M., Chayes, J., and Lucier, B. Maximiz-
ing social influence in nearly optimal time. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms, SODA’14,
2014.

Borodin, A., Filmus, Y., and Oren, J. Threshold models for com-
petitive influence in social networks. In Proceedings of the 6th
International Conference on Internet and Network Economics,
WINE’10, pp. 539–550, 2010.

Budak, C., Agrawal, D., and El Abbadi, A. Limiting the spread of
misinformation in social networks. In Proceedings of the 20th
International Conference on World Wide Web, WWW ’11, pp.
665–674, 2011.

Chen, W., Wang, Y., and Yang, S. Efficient influence maxi-
mization in social networks. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 199–208. ACM, 2009.

Chen, W., Wang, C., and Wang, Y. Scalable influence maxi-
mization for prevalent viral marketing in large-scale social net-
works. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp.
1029–1038. ACM, 2010.

Domingos, P. and Richardson, M. Mining the network value of
customers. In Proceedings of the 7th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp. 57–66. ACM, 2001.

Feige, U. A threshold of ln n for approximating set cover. Journal
of ACM, 45:634–652, 1998.

Filatova, E. and Hatzivassiloglou, V. Event-based extractive sum-
marization. In Proceedings of ACL Workshop on Summariza-
tion, 2004.

Fisher, M. L., Nemhauser, G. L., and Wolsey, L. A. An analysis
of approximations for maximizing submodular set functions ii.
Mathematical Programming Study, 8:73–87, 1978.

Fujishige, S. Submodular Functions and Optimizations. Num-
ber 58 in Annals of Discrete Mathematics. Elsevier, 2nd edi-
tion, 2005.

Iwata, S. Submodular function minimization. Math. Program.,
112(1):45–64, 2008.

Jiang, Q., Song, G., Gao, C., Wang, Y., Si, W., and Xie, K. Sim-
ulated annealing based influence maximazation in social net-
works. In Proceedings of the Twenty-fifth Conference on Arti-
ficial Intelligence, pp. 127–132. AAAI, 2011.

Kempe, D., Kleinberg, J., and Tardos, E. Maximizing the spread
of influence through a social network. In Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 137–146. ACM, 2003.

Krause, A. and Golovin, D. Submodular function maximization.
In Bordeaux, L., Hamadi, Y., and Kohli, P. (eds.), Tractability:
Practical Approaches to Hard Problems, to appear. Cambridge
University Press, 2014.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen,
J., and Glance, N. S. Cost-effective outbreak detetion in net-
works. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp.
420–429. ACM, 2007.

Lin, H. and Bilmes, J. Multi-document summarization via bud-
geted maximization of submodular functions. In Proceedings
of the Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 912–920, 2010.

Lin, H. and Bilmes, J. A class of submodular functions for docu-
ment summarization. In Proceedings of the Annual Conference
of the North American Chapter of the Association for Compu-
tational Linguistics, pp. 510–520, 2011.

Minoux, M. Accelerated greedy algorithms for maximizing sub-
modular set functions. Optimization Techniques, Lecture Notes
in Control and Information Sciences, 7:234–243, 1978.

Nemhauser, G., Wolsey, L., and Fisher, M. An analysis of the ap-
proximations for maximizing submodular set functions. Math-
ematical Programming, 14:265–294, 1978.

Richardson, M. and Domingos, P. Mining knowledge-sharing
sites for viral marcketing. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 61–70. ACM, 2002.

Shioura, A. On the pipage rounding algorithm for submodular
function maximization — a view from discrete convex analy-
sis. Discrete Math., Alg. and Appl., 1(1):1–24, 2009.

Singh, AP, Guillory, A., and Bilmes, J. On bisubmodular maxi-
mization. In Proceedings of the 15th International Conference
on Artificial Intelligence and Statistics, pp. 1055–1063, 2012.

Soma, T., Kakimura, N., Inaba, K., and Kawarabayashi,
K. Optimal budget allocation: Theoretical guaran-
tee and efficient algorithm (extended version). 2014.
URL http://www.opt.mist.i.u-tokyo.ac.jp/
˜tasuku/papers/icml2014.pdf.

Sviridenko, M. A note on maximizing a submodular set function
subject to a knapsack constraint. Operations Research Letters,
32:41–43, 2004.

http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations
http://www.opt.mist.i.u-tokyo.ac.jp/~tasuku/papers/icml2014.pdf
http://www.opt.mist.i.u-tokyo.ac.jp/~tasuku/papers/icml2014.pdf

