
Multi-Return Macro Tree Transducers

Kazuhiro Inaba1, Haruo Hosoya1, and Sebastian Maneth2,3

1 University of Tokyo,{kinaba,hahosoya }@is.s.u-tokyo.ac.jp
2 National ICT Australia,sebastian.maneth@nicta.com.au

3 University of New South Wales, Sydney

Abstract. An extension of macro tree transducers is introduced with the capa-
bility of states to return multiple trees at the same time. Under call-by-value se-
mantics, the new model is strictly more expressive than call-by-value macro tree
transducers, and moreover, it has better closure properties under composition.

1 Introduction

Macro tree transducers (mtts) [1, 2] are a finite-state machine model for tree translation.
They are motivated by compilers and syntax-directed semantics and more recently have
been applied to XML transformations and query languages [3, 4]. An mtt processes the
input tree top-down, starting in its initial state at the root node. Depending on its state
and the label of the current input node, it produces an output subtree which possibly
contains recursive state calls to children of the current node. State calls may appear at
internal nodes of the output and can thus be nested. Technically speaking, this means
that a (state, current label)-rule is parameterized by a sequence of arbitrary output trees.
The number of such “accumulating parameters” is fixed for each state of the transducer.
The initial state has zero parameters, because we are interested in tree-to-tree, not (tu-
ple of trees)-to-tree translations. If every state has zero parameters, then we obtain an
ordinary top-down tree transducer [5, 6], in which all state calls appear at leaves of
output rule trees. It is well-known that accumulating parameters add power: mtts re-
alize strictly more translations than top-down tree transducers (for instance, top-down
tree transducers have at most exponential size increase while mtts can have double-
exponential increase). However, mtts have the asymmetry that, while each state can
propagate multiple output trees in a top-down manner in its accumulating parameters,
it cannot do it in a bottom-up manner because it is still restricted to return only a single
output tree and such a tree cannot be decomposed once created.

This paper introduces an extension of mtts calledmulti-return macro tree transducer
(mr-mtt) that addresses this asymmetry. In an mr-mtt, states may return multiple trees
(but a fixed number for each state, with the initial state returning exactly one tree). As
an example, consider a nondeterministic translationtwist that takes as input monadic
trees of the forms(s(. . . s(z) . . .)) and produces output trees of the formroot(t1, t2)
wheret1 is a monadic tree overa’s andb’s (and a leafe), andt2 is a monadic tree
over A’s andB’s such thatt2 is the reverse oft1, and both have the same size as the
input. For instance,root(a(a(b(e))), B(A(A(E)))) is a possible output tree for the input
s(s(s(z))). Such a translation can be realized by an mr-mtt with the rules of Fig. 1. The

hq1; s(x)i ! hq1; xia
A1

233 21 ⟨q0, s(x)⟩() → let (z1, z2) = ⟨q1, x⟩(A(E)) in root(a(z1), z2)

⟨q0, s(x)⟩() → let (z1, z2) = ⟨q1, x⟩(B(E)) in root(b(z1), z2)

⟨q0, z⟩() → root(e, E)

⟨q1, s(x)⟩(y1) → let (z1, z2) = ⟨q1, x⟩(A(y1)) in (a(z1), z2)

⟨q1, s(x)⟩(y1) → let (z1, z2) = ⟨q1, x⟩(B(y1)) in (b(z1), z2)

⟨q1, z⟩(y1) → (e, y1)

Fig. 1.Rules of the multi-return mtt realizingtwist

stateq1 is “multi-return”; it generates pairs of trees. The first component is generated
in a top-down manner: at each inputs-node, ana-labeled output node is generated
which has below it the first component (z1) of the recursiveq1-call at the child of the
current input node. This is the left branch of the whole output tree. The right branch is
obtained by the second component and is generated in a bottom-up manner through the
accumulating parameter ofq1. As we will show, the above translationtwist, cannot be
realized by any conventional mtt. The proof of inexpressibility is technically involved
and uses special normal forms oftwist in order to derive a contradiction. In general it
is very difficult to prove that a given translation cannot be realized by a tree transducer
class, because hardly any tools exist for showing inexpressibility. Note that multi-return
mtts have the same size increase as mtts.

In the case of deterministic and total deterministic transducers, mr-mtts are equally
powerful as mtts. For the total deterministic case this already follows from the fact that
tree generating top-down tree-to-graph transducers (trgen-tg) realize the same transla-
tions as total deterministic mtts [7]. Mr-mtts can be seen as particular trgen-tgs; e.g.,
the forth rule oftwist is depicted as trgen-tgs rule in the left of Fig. 1.

Besides an increase in expressive power, mr-mtts have better closure properties than
mtts: they are closed under leftandright composition with total deterministic top-down
tree transducers (DtTs). This is rather surprising, because ordinary call-by-value mtts
are not closed under composition withDtTs. The latter was already shown in [1] for the
case of left-composition. The case of right-composition is proved in this paper (using
twist). In fact, our proof can even be “twisted” to the call-by-name semantics of mtts
to show that call-by-name mtts are also not closed under right-composition withDtT.
Thus, the two main classes of mtts, call-by-value and call-by-name are both not closed
under right-composition withDtT, while call-by-value multi-return mtts are closed.

2 Definitions

A set Σ with a mappingrank : Σ → N is called aranked set. We often writeσ(k)

to indicate thatrank(σ) = k. Theproductof a ranked setA and a setB is the ranked
setA × B = {⟨a, b⟩(k) | a(k) ∈ A, b ∈ B}. The setTΣ of treest over a ranked set
Σ is defined by the BNFt ::=σ(t1, . . . , tk) for σ(k) ∈ Σ. We often omit parentheses
for rank-0 and rank-1 symbols and write them as strings. For example, we writeabcd
instead ofa(b(c(d()))).

Whenx
(0)
1 , . . . , x

(0)
m ∈ Σ and t, t1, . . . , tm ∈ TΣ , (simultaneous) substitutionof

t1, . . . , tm for x1, . . . , xm in t is writtent[x1/t1, . . . , xm/tm] (or sometimest[x⃗/t⃗] for
brevity) and defined to be a tree where every occurrence ofxi (i = 1, . . . ,m) in t is
replaced by the correspondingti. For a ranked setΣ and rank-0 symbol¤ /∈ Σ, a tree
C ∈ TΣ∪{�} that contains exactly one occurrence of¤ is called aone-holeΣ-context.
We writeC[t] as a shorthand forC[¤/t].

Macro Tree Transducers Throughout the paper, we fix the sets of input variables
X = {x1, x2, . . . } and accumulating parametersY = {y1, y2, . . . } which are all of
rank 0 and assume any other ranked set to be disjoint withX andY . The setXi is
defined as{x1, . . . , xi}, andYi is defined similarly.

A macro tree transducer(mtt) is specified asM = (Q, q0, Σ,∆,R), whereQ, Σ,
and∆ are finite ranked sets. We callQ the set ofstates, q0 ∈ Q the initial state of
rank 0,Σ the input alphabet, ∆ theoutput alphabet, andR the finite set of translation
rulesof the form⟨q(m), σ(k)(x1, . . . , xk)⟩(y1, . . . , ym) → r where the right-hand side
r is a tree fromT∆∪(Q×Xk)∪Ym

. Rules of this form are called⟨q, σ⟩-rules. An mtt is
deterministic(total, respectively) if there exists at most (at least) one⟨q, σ⟩-rule for
every ⟨q, σ⟩ ∈ Q × Σ. Also, an mtt islinear if the right-hand side of every rule in
R contains at most one occurrence ofxi for eachxi ∈ X. We define the ranked set
ΛM = ∆ ∪ (Q × TΣ) and call trees inTΛM

thesentential formsof M . The translation
realized byM is defined in terms of the rewrite relation⇒M over sentential forms.
The “one-step derivation” relation that we use, is thecall-by-value(also known asIO-
mode) derivation relation. Letu, u′ ∈ TΛM . Thenu ⇒M u′ if there is a⟨q, σ⟩-rule in
R with right-hand sider, a one-holeΛM -contextC, input treess1, . . . , sk ∈ TΣ , and
output treest1, . . . , tm ∈ T∆, such thatu = C[⟨q, σ(s⃗)⟩(⃗t)] andu′ = C[r[x⃗/s⃗, y⃗/t⃗]].
We defineu↓M = {t ∈ T∆ | u ⇒∗

M t} and the translationτ(M) realized byM as
{⟨s, t⟩ ∈ TΣ×T∆ | t ∈ ⟨q0, s⟩↓M}. The class of translations realized by mtts is denoted
by MT. The restricted class of translations realized by deterministic (total, or linear)
transducers is denoted by prefixD (t, or L, respectively). An mtt with all its states
of rank-0 (i.e., without accumulation parameters) is calledtop-down tree transducer
and abbreviated as tt; the corresponding class of translations is denoted byT . As a
special case, a linear total deterministic tt with one state only is also calledlinear tree
homomorphismand the corresponding class of translations is denoted byLHOM.

The operator; denotes sequential composition. That is,τ1 ; τ2 = {(s, t) | ∃w.(s, w)
∈ τ1, (w, t) ∈ τ2} for two translationsτ1 andτ2, andA1 ; A2 = {τ1 ; τ2 | τ1 ∈ A1, τ2 ∈
A2} for two classes of translationsA1 andA2.

Multi-Return Macro Tree Transducers The multi-return macro tree transducer
extends mtt by construction and deconstruction (via let expressions) of tuples of return
values. Each state now has a “dimension” which is the number of trees it returns. In
addition toX andY , we fix the setZ = {z1, z2, . . . } of let-variables, of rank 0, and
assume it to be disjoint with any other ranked set.

Definition 1. A multi-return macro tree transducer(mr-mtt) of dimensiond ≥ 1 is
a tuple (Q, q0, Σ,∆,R,D), whereQ, q0, Σ, and ∆ are as for mtts,D is a map-
ping from Q to {1, . . . , d} such thatD(q0) = 1, andR is a set of rules of the form
⟨q(m), σ(k)(x1, . . . , xk)⟩(y1, . . . , ym) → r wherer ∈ rhsD(q) and, fore ≥ 1 the set

rhse is defined as:

r ::= l1 . . . ln (u1, . . . , ue) (n ≥ 0)

l ::= let(zj+1, . . . , zj+D(q′)) = ⟨q′(k), xi⟩(u1, . . . , uk) in (xi ∈ Xk)

with u1, u2, . . . ∈ T∆∪Ym∪Z . We usually omit parentheses around tuples of size one,
i.e., write like letzj = · · · in u1. We require any rule to be well-formed, that is, the left-
most occurrence of any variablezi must appear at a “binding” position (between ‘let’
and ‘=’), and the next occurrence (if any) must appear after the ‘in’ corresponding to
the binding occurence.Total, deterministic, andlinear mr-mtts are defined as for mtts.

As for mtts, the call-by-value semantics of mr-mtts is defined in terms of rewriting
over sentential forms. Note that the target of rewriting is always the state call in the very
first let expression of a given sentential form (this expression cannot have let-variables).
Let M = (Q, q0, Σ,∆,R,D) be an mr-mtt. The setKM of sentential formsκ of M is
defined by the following BNF

κ ::= l1 . . . ln u1

l ::= let(zj+1, . . . , zj+D(q)) = ⟨q(k), s⟩(u1, . . . , uk) in

wheres ∈ TΣ andu1, u2, . . . ∈ T∆∪Z . Again, we require the sentential forms to be
well-formed in the same sense as for the right-hand sides of rules. Letκ1, κ2 ∈ KM .
Thenκ1 ⇒M κ2 if κ1 has the form let(zj+1, . . . , zj+D(q)) = ⟨q(m), σ(k)(s1, . . . , sk)⟩
(t1, . . . , tm) in κ wheresi ∈ TΣ andti ∈ T∆, and there is a⟨q,σ⟩-rule in R with the
right-hand sidel1 . . . ln (u1, . . . , uD(q)) andκ2 has the forml′1 . . . l′nκ′ where

l′i = li[x1/s1, . . . , xk/sk, y1/t1, . . . , ym/tm] (i = 1, . . . , n)
u′

k = uk[y1/t1, . . . , ym/tm] (k = 1, . . . , D(q))
κ′ = κ[zj+1/u′

1, . . . , zj+D(q)/u′
D(q)].

Here, we adopt the standard convention that substitution automatically avoids inappro-
priate variable capture by silently renaming let-variables.

We defineκ↓M = {t ∈ T∆ | κ ⇒∗
M t}. The translationτ(M) realized byM is

defined as{(s, t) ∈ TΣ × T∆ | t ∈ (letz = ⟨q0, s⟩ in z)↓M}. The class of translations
realized by mr-mtts is denoted byMM. By d-MM with d ≥ 1, we denote the class of
translations realized by mr-mtts of dimensiond. The prefixesD, t, andL are used in
the same way as for mtts. Note thatMT ⊆ 1-MM (by replacing each nested state call of
the mtt by a let-binding), with determinism and totality being preserved.

For technical convenience, we sometimes regardrhsd as a subset ofT∆∪(Q×Xk)∪Ym

∪Z∪Ld
mr

whereLd
mr = {let(4)1 , . . . , let(3+d)

d , tup(1)
1 , . . . , tup(d)

d }, which should be un-
derstood as the abstract syntax tree of its textual representation.

3 Simulation of Multi-Return MTTs by MTTs

This section shows that any mr-mtt can be decomposed into a three-fold composition of
simpler transducers, namely, a pre-processor for dealing with let-bindings, an mtt doing
the essential translation, and a post-processor for dealing with tuples.

Tuple Return Values Following the well-known (Mezei-Wright-like [8]) tupling-
selection technique, we use special symbols to represent tuples and selection. Forn≥2,
defineLn

tup = {τ (2)
2 , . . . , τ

(n)
n , π

(1)
1 , . . . , π

(1)
n }. Intuitively, τi means “construct a tuple

of i elements” andπi means “select thei-th element of”. We define the transducer
tupsn

∆ whose purpose is to recursively convert subtrees of the formπi(τk(t1, . . . , tk))
into ti. Thetupling-and-selection transducer tupsn

∆ is the linear deterministic total top-
down tree transducer with input alphabet∆ ∪ Ln

tup, output alphabet∆, set of states
{q1, . . . , qn}, initial stateq1, and the following rules for eachqi:

⟨qi, πk(x1)⟩ → ⟨qk, x1⟩
⟨qi, τk(x1, . . . , xk)⟩ → ⟨q1, xi⟩ if 1 ≤ i ≤ k

→ ⟨q1, x1⟩ otherwise

⟨qi, δ(x1, . . . , xm)⟩ → δ(⟨q1, x1⟩, . . . , ⟨q1, xm⟩) for δ(m) ∈ ∆,m ≥ 0.

Lemma 2. MM ⊆ 1-MM ; LDtT. Totality, determinism, and numbers of rules and pa-
rameters are preserved.

Proof. Let M = (Q,Σ,∆, q0, R,D) be an mr-mtt of dimensiond. We define another
mr-mtt M ′ = (Q,Σ,∆ ∪ Ld

tup, q0, R
′, D′), whereD′(q) = 1 for all q ∈ Q and

R′ = {⟨q, σ(x⃗)⟩(y⃗) → et(r) | ⟨q, σ(x⃗)⟩(y⃗) → r ∈ R}. Theexplicit-tuplingfunction
et is inductively defined as follows:

et(u1) = u1

et((u1, . . . , ue)) = τe(u1, . . . , ue) if e > 1
et(letz1 = ⟨q, x⟩(u⃗) in r′) = letz1 = ⟨q, x⟩(u⃗) in et(r′)

et(let(z1, . . . , zm) = ⟨q, x⟩(u⃗) in r′) =
letz1 = ⟨q, x⟩(u⃗) in et(r′[z1/π1(z1), . . . , zm/πm(z1)])) if m > 1.

We also applyet to sentential forms inKM , andtupsd∆ to sentential forms inKM ′ . Then
for all κ1, κ2 ∈ KM andκ′

1, κ
′
2 ∈ KM ′ such thatet(κ1) = τ(tupsd∆)(κ′

1), κ1 ⇒M κ2,
andκ′

1 ⇒M ′ κ′
2 assuming that the two derivations are done by corresponding rules,

we haveet(κ2) = τ(tupsd∆)(κ′
2). By induction on the number of derivation steps, we

have thatt′ ∈ τ(M ′)(s) if and only if τ(tupsd
∆)(t′) ∈ τ(M)(s). Thus,τ(M) =

τ(M ′) ; τ(tupsd∆) which proves the lemma. ⊓⊔

Let-Bindings Even without multiple return values, let-bindings still provide some
additional power with respect to ordinary mtts. For example, the right-hand side of an
mr-mtt rule letz = ⟨q, x⟩ in δ(z, z) is not necessarily equivalent to the mtt oneδ(⟨q, x⟩,
⟨q, x⟩). In the former rule, the two children ofδ must be the same tree that is returned
by a single state call⟨q, x⟩. On the other hand, in the latter rule, two state calls⟨q, x⟩
may return different trees due to nondeterminism. Thus, for simulating let-bindings
we must first fully evaluate state calls to an output tree andthencopy them if required.
Basically, such order of evaluation can be simulated using accumulating parameters and
state calls, since we adopt call-by-value semantics. For instance, the above example of
mr-mtt rule is equivalent to the mtt rule⟨p, x⟩(⟨q, x⟩) using an auxiliary statep and a
set of auxiliary rules⟨p, σ(x⃗)⟩(y) → δ(y, y) for everyσ ∈ Σ.

However, this approach does not work for nested let-bindings. The problem is that
the calls of auxiliary states to simulate copying must be applied to some child of the
current node. Consider the following rule:

⟨q, σ(x1, . . . , xn)⟩ → letz1 = ⟨q1, x1⟩ in

letz2 = ⟨q2, x2⟩(z1) in
...

letzn = ⟨qn, xn⟩(z1, . . . , zn−1) in δ(z1, . . . , zn).

To simulate the first let-binding, we need an auxiliary state call like⟨p, xi⟩(⟨q1, x1⟩),
and we do the rest of the work in the⟨p, σ⟩-rules. But this time, we have to generate
other state calls such as⟨q2, x2⟩(z1) in the auxiliary rule, which is impossible since in
⟨p, xi⟩ we are only able to apply states to thechildrenof xi, while x2 is asiblingof xi.

One possible solution is to insert auxiliary nodes of rank 1 above each node of the
input tree, similar as done for the removal of stay moves in [9]. We can then run the
auxiliary states on the inserted nodes in order to simulate the let-bindings. For instance,
the first two lets of the above rule can be simulated by

⟨q, σ̄1(x1)⟩ → ⟨p, x1⟩(⟨⟨q1, 1⟩, x1⟩, α)
⟨p, σ̄2(x1)⟩(y1, y2) → ⟨p, x1⟩(y1, ⟨⟨q2, 2⟩, x1⟩(y1)),

whereα is an arbitrary output symbol of rank 0. The new auxiliary state⟨q′, i⟩ “skips”
the next barred nodes and callsq′ at thei-th child of the nextσ-node. Forn ∈ N, we
definemonn

Σ (“monadic insertion”) as the linear tree homomorphism which, for each
σ(k)∈Σ, has the rule⟨q, σ(x1, . . . , xk)⟩→ σ̄1(σ̄2(· · · σ̄n(σ(⟨q, x1⟩, . . . , ⟨q, xk⟩))· · ·)).

Lemma 3. 1-MM ⊆ LHOM ; MT. Totality and determinism are preserved. If the mr-
mtt hasn states of rank≤k, r rules,≤l let-bindings per rule, andm input symbols of
rank≤b, then the mtt has at mostn+r+nb states,k+l parameters, and(r+nb)(l+1)
(or (r + nb)(m + l + 1) in the case of totality) rules.

Proof. Let the mr-mtt be(Q, Σ,∆, q0, R,D). The state set of the simulating mtt is
Q ∪ {p(k+m)

r | r ∈ R,m = number of let-bindings inr, k = rank of the state ofr} ∪
(Q × {1, . . . , b}). Suppose the mr-mtt has a ruler ∈ R of the form (whereq(k) ∈ Q)
⟨q, σ(x⃗)⟩(y1, . . . , yk) → let z1 = ⟨q1, xi1⟩(u⃗1) in . . . let zm = ⟨qm, xim⟩(u⃗m) in u.
Let ζ be the substitution[z1/yk+1, . . . , zm/yk+m]. The simulating mtt has the follow-
ing rules each corresponding to one let-binding:

⟨q, σ̄1(x1)⟩(y1, . . . , yk) → ⟨pr, x⟩(y1, . . . , yk, ⟨⟨q1, i1⟩, x1⟩(u⃗1), α, . . . , α)
⟨pr, σ̄2(x1)⟩(y1, . . . , yk+m) → ⟨pr, x⟩(y1, . . . , yk+1, ⟨⟨q2, i2⟩, x1⟩(u⃗2ζ), α, . . . , α)

...
⟨pr, σ̄m(x1)⟩(y1, . . . , yk+m) → ⟨pr, x⟩(y1, . . . , yk+m−1, ⟨⟨qm, im⟩, x1⟩(u⃗mζ))

⟨pr, σ̄m+1(x1)⟩(y1, . . . , yk+m) → ⟨pr, x⟩(y1, . . . , yk+m)
...

⟨pr, σ̄l(x1)⟩(y1, . . . , yk+m) → ⟨pr, x⟩(y1, . . . , yk+m)
⟨pr, σ(x⃗)⟩(y1, . . . , yk+m) → uζ

whereα is an arbitrary rank-0 output symbol. These dummy arguments are passed just
for supplying exactlym arguments and will never appear in output trees.

The states⟨q, j⟩ ∈ Q × {1, . . . , b} are used to remember the correct child number
j where to applyq. The rules for⟨q, j⟩ are:

⟨⟨q, j⟩, σ̄i(x1)⟩(y⃗) → ⟨⟨q, j⟩, x1⟩(y⃗) for eachσ ∈ Σ and1 ≤ i ≤ l

⟨⟨q, j⟩, σ(x⃗)⟩(y⃗) → ⟨q, xj⟩(y⃗) for eachσ ∈ Σ of rank ≥ j.

It should be clear that this mtt preceded bymon l
Σ realizes the same translation as the

original mr-mtt. Let us take a look at totality and determinism. The original stateq
remains total (or deterministic, respectively) for a symbolσ̄1 if and only if it is total
(deterministic) forσ in the original rule set. Newly added statespr are deterministic if
the original stateq was. Newly added states⟨q, j⟩ are deterministic. For the remaining
undefined part (q-rules forσ̄2, . . . , σ̄l andσ and⟨q, j⟩-rules forσ with rank< j), we
add dummy rules to regain totality if the original mr-mtt was total. ⊓⊔

By combining Lemmas 2 and 3, we obtain the main result of this section.

Lemma 4. MM ⊆ LHOM ; MT ; LDtT.

Since, by Theorem 7.6 of [1],DMT andDtMT are both closed under left- and- right-
composition withDtT, we obtain the following corollary.

Corollary 5. DMM = DMT and DtMM = DtMT.

The right part of Corollary 5 follows also from the result of [7], that total deterministic
tree generating top-down tree-to-graph transducers (trgen-tg) are equivalent toDtMT,
because as mentioned in the Introduction, mr-mtts are a special case of trgen-tgs.

4 Simulation of MTTs by Multi-Return MTTs

We now show thatMM is closed under right-composition withDtT. The idea is to
construct the simulating mr-mtt byrunning the tt on the right-hand side of each rule
of the original mr-mtt. Let{p1, . . . , pn} be the set of states of the tt. We construct the
rules so that if a stateq returns a tuple(t1, . . . , td), then the corresponding stateq′ of
the simulating mr-mtt returns(⟨p1, t1⟩↓, . . . , ⟨p1, td⟩↓, . . . , ⟨pn, t1⟩↓, . . . , ⟨pn, td⟩↓).

Lemma 6. MM ; DtT ⊆ MM. Totality and determinism are preserved. The number of
parameters and the dimension of the resulting mr-mtt aren times larger the original
ones, wheren is the number of states of the tt. The number of states increases by 1, and
the number of rules is at most twice as that of the original one.

Proof. Let M = (Q,Σ,∆, q0, RM , D) be an mr-mtt andN = (P,∆, Γ, p1, RN) be a
DtT with P = {p1, . . . , pn}. We define the mr-mttM ′ = (Q′, Σ, Γ, q̂, R′, D′), where
Q′ = {q′(kn) | q(k) ∈ Q} ∪ {q̂(0)}, D′(q′) = n · D(q), D′(q̂) = 1, and

R′ = {⟨q′, σ(x⃗)⟩(y1, . . . , ykn) → runN(r) | ⟨q, σ(x⃗)⟩(y1, . . . , yk) → r ∈ RM}
∪ {⟨q̂, σ(x⃗)⟩ → runN0(r) | ⟨q0, σ(x⃗)⟩ → r ∈ RM}

whererunN andrunN0 are defined inductively as follows. Recall from the Definitions
the “tree view” of the right-hand side of our mr-mtt (withtupandlet node).

runN0(tup1(u1)) = tup1(⟨p1, u1⟩↓N ′)
runN0(lete(zs+1,. . ., zs+e, ⟨q, x⟩(u1,. . ., uk), κ) = leten(zs,e, ⟨q, x⟩(puk), runN0(κ))

runN(tupe(u1, . . . , ue)) = tupen(pue)
runN(lete(zs+1,. . ., zs+e, ⟨q, x⟩(u1,. . ., uk), κ) = leten(zs,e, ⟨q, x⟩(puk), runN(κ))

wherezs,e = zsn+1, . . . , zsn+en, pum = ⟨p1, u1⟩↓N ′,. . ., ⟨p1, um⟩↓N ′,. . ., ⟨pn, u1⟩↓N ′,
. . . , ⟨pn, um⟩↓N ′ andN ′ isN extended by the rules⟨pj , yi⟩→y(i−1)n+j and⟨pj , zi⟩→
z(i−1)n+j for 1 ≤ i ≤ µ, 1 ≤ j ≤ n, whereµ is the maximum of the number of
parameters and the number of let-bindings appearing inRM . Then, by induction on
the number of derivation steps, we can show that⟨pj , ⟨q, t⟩(u⃗)↓M ⟩↓N ′ is equal to the
corresponding subtuples of⟨q′, t⟩(puk)↓M ′ , which proves the lemma. ⊓⊔

Note that the proof of Lemma 6 relies on thetotality of N. It simulates allpi-
translations, some of which may not contribute to the final output. IfN is not total, this
try-and-discard strategy does not work. Undefined calls that are to be discarded will
stop the whole translation, since we are considering call-by-value evaluation. The proof
relies also on thedeterminismof N. If pj is nondeterministic, multiple calls ofpj(yi)
may generate different outputs and thus replacing them by the same single variable
y(i−1)n+j yields incorrect results.

Next, we investigate the case of left-composition. The idea is, again, to simulate the
compositionDtT ; MT by constructing an mr-mtt by running the mtt on the rules of tt.
Note that we crucially use let-bindings here for simulating parameter copying of the
original mtt. Suppose we have a tt rule⟨q, e(x1)⟩ → a(b, ⟨q, x1⟩) and mtt rules:

⟨p, a(x1, x2)⟩(y1) → ⟨p, x1⟩(⟨p, x2⟩(y1))
⟨p, b⟩(y1) → d(y1, y1).

Using a let-binding, we construct a rule of the simulating transducer⟨⟨p, q⟩, e(x1)⟩(y1)
→ let z = ⟨⟨p, q⟩, x1⟩(y1) in d(z, z) which correctly preserves the original semantics
that the left and right child of thed node are equal. Note that without let-bindings, we
cannot avoid duplicating a state call; at best we will have the rule⟨⟨p, q⟩, e(x1)⟩(y1) →
d(⟨⟨p, q⟩, x1⟩(y1), ⟨⟨p, q⟩, x1⟩(y1)), which is incorrect because the duplicated state calls
may nondeterministically yield different outputs, which is not originally intended.

Lemma 7. DtT ; MT ⊆ 1-MM. Totality and determinism are preserved. The number
of states isn times larger, wheren is the number of states of the DtT. The number
of parameters remains the same. The number of rules may be double exponential with
respect to the depth of right-hand sides of the DtT.

Proof. Let M1 = (Q, Σ, Γ, q0, R1) be aDtT and M2 = (P, Γ,∆, p0, R2) an mtt.
DefineM× = (P × Q,Σ,∆, ⟨p0, q0⟩, R,D) with R = {⟨⟨p, q⟩, σ(x⃗)⟩(y⃗) → κ | κ ∈
fz(⟨p, r⟩(y⃗), z), r is the right-hand side of the unique⟨q, σ⟩-rule of R1}. Intuitively, a
state⟨p, q⟩ denotes the translation byq followed byp. The relationfz is very similar
to the derivation relation ofM2 (thus,fz(⟨p, r⟩(y⃗), z) should be intuitively read as

⟨p, r⟩(y⃗)↓M2). However, to “factor out” let-bindings for avoiding incorrect duplication
of state calls, we define it slightly differently. For the sake of simplicity, we definefz

as a nondeterministic function as follows:

fz(y, u) = u[z/y] y ∈ Y ∪ Z

fz(δ(t1, . . . , tk), u) = fz1(t1, . . . fzk
(tk, u[z/δ(z1, . . . , zk)]) · · ·) δ ∈ ∆

fz(⟨p, ⟨q, xi⟩⟩(t1, . . . , tk), u) = fz1(t1, . . . fzk
(tk,

letz = ⟨⟨p, q⟩, xi⟩(z1, . . . , zk) in u) . . .)
fz(⟨p, γ(s⃗)⟩(t1, . . . , tk), u) = fz1(t1, . . . fzk

(tk, fz(κ[x⃗/s⃗, y⃗/z⃗], u) · · ·)
for every right-hand sideκ of any⟨p, γ⟩-rule,γ ∈ Γ .

The last argumentu of fz denotes a context where the translated right-hand side of the
rule should be placed. By induction on the structure of the input trees, we can prove
⟨p, ⟨q, s⟩↓M1⟩(⃗t)↓M2 = ⟨⟨p, q⟩, s⟩(⃗t)↓M× for p ∈ P , q(k) ∈ Q, t⃗ ∈ T k

∆, ands ∈ TΣ ,
which proves the lemma. ⊓⊔

We can now generalize the lemma in two directions: the second translation from
MT to MM, and the first translation from total to partial.

Lemma 8. DtT ; MM ⊆ MM. Totality and determinism are preserved.

Proof. By Lemma 4,DtT ; MM ⊆ DtT ; LHOM ; MT ; LDtT. By Lemma 6.9 of [6],
which says thatDtT is closed under composition, the latter is inDtT ; MT ; LDtT. By
Lemma 7 this is included inMM ; LDtT, which is inMM by Lemma 6. ⊓⊔

Lemma 9. DT ; MM ⊆ MM.

Proof. We haveDT ⊆ DT-FTA; DtT (Lemma 5.22 of [1]) whereDT-FTA is the class
of partial identity translations recognized by deterministic top-down tree automata,
Lemma 8, andDT-FTA; MM ⊆ MM (can be proved by the same construction as for
Lemma 5.21 of [1]; for every rule of the initial state, we add one let-binding that carries
out the run of the automaton). These three lemmas proveDT ; MM ⊆ MM. ⊓⊔

Using the lemmas proved up to here, we obtain the two main theorems: the charac-
terization of mr-mtts in terms of mtts and its closure properties.

Theorem 10. MM = LHOM ; MT ; LDtT. Determinism and totality are preserved.

Theorem 11. DT ; MM ⊆ MM and MM; DtT ⊆ MM.

5 Expressiveness

First we show that mr-mtts of dimension 1 are already more powerful than normal mtts
even without tuple-returning capability. On page 123 of [1], a counterexample to show
MT (LHOM ; MT is given without proof. (The difficult part of their counterexample
to be realized inMT is the generation of twoidenticalpairs of a nondeterministic rela-
beling of the input, which is similar to ourtwist translation that generatesmutually re-
versepair of nondeterministic relabelings.) By this example and Lemma 7, we have the
following proposition, which shows that binding intermediate trees by let-expressions
itself adds expressiveness.

Proposition 12. MT (1-MM.

Moreover, mr-mtts that return pairs of trees are strictly more powerful than single
return ones. Here we only give a sketch of the proof. For more detail, see [10] (which
proves the unrealizability inMT, but it also works for1-MM and call-by-name mtts).

Theorem 13. 1-MM (2-MM.

Proof (Sketch).A translation realized in2-MM, namely, thetwist translation of the
Introduction is shown not to be realizable by any mr-mtt with dimension 1. The proof is
by contradiction. Note that the number of outputs oftwist is exponential with respect
to the size of the input, that is,|twist(snz)| = 2n. We first assume an mr-mttM of
dimension 1 to realizetwist , and then by giving two normal forms of sentential forms
(a weak normal form that contains no let-variables under output symbols, and a strong
normal form that is the weak normal form with at most one let-binding), we can show
that|τ(M)(snz)| = O(n2), which is a contradiction. ⊓⊔

Note that the compositionMT ; DtT can realizetwist . We can construct an mtt (both
in call-by-value and call-by-name semantics) that nondeterministically translates the
input snz into all monadic trees of the form(a|b)n(A|B)nE such that the lower-part is
the reverse of the upper-part. Then we split such monadic trees to lower- and upper-
parts by aDtT transducer, so that the composition of these two translations realizes
twist . Thus, together with the proof of Theorem 13, we have the following theorem.

Theorem 14. MT ; DtT ̸⊆ MT and MTOI ; DtT ̸⊆ MTOI , where MTOI denotes the
class of translations realized by call-by-name mtts.

Acknowledgements We like to thank Joost Engelfriet for his comment that mr-
mtts can be simulated by simpler transducers, which led us to the results in Sections 3
and 4. This work was partly supported by Japan Society for the Promotion of Science.

References

1. Engelfriet, J., Vogler, H.: Macro tree transducers. JCSS31 (1985) 71–146
2. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree Transduc-

ers. Springer-Verlag (1998)
3. Maneth, S., Berlea, A., Perst, T., Seidl, H.: XML type checking with macro tree transducers.

In: Principles of Database Systems (PODS). (2005) 283–294
4. Perst, T., Seidl, H.: Macro forest transducers. IPL89 (2004) 141–149
5. Rounds, W.C.: Mappings and grammars on trees. MST4 (1970) 257–287
6. Thatcher, J.W.: Generalized sequential machine maps. JCSS4 (1970) 339–367
7. Engelfriet, J., Vogler, H.: The translation power of top-down tree-to-graph transducers. JCSS

49 (1994) 258–305
8. Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Inf. Contr.11 (1967) 3–29
9. Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro tree trans-

ducers. Acta Informatica39 (2003) 613–698
10. Inaba, K., Hosoya, H.: Multi-return macro tree transducers. In: PLAN-X. (2008)

