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Abstract. Although monadic second-order logic (MSO) has been a foun-
dation of XML queries, little work has attempted to take MSO formu-
lae themselves as a programming construct. Indeed, MSO can express
(1) all regular queries, (2) deep matching without explicit recursion, (3)
queries that “don’t care” unmentioned nodes, and (4) n-ary queries for
locating n-tuples of nodes. While previous frameworks for subtree extrac-
tion (path expressions, pattern matches, etc.) each have some of these
properties, none satisfies all. In this work, we have designed and imple-
mented a practical XML transformation language, MTran, fully exploit-
ing MSO’s expressiveness. Based on XSLT-like “select-and-transform”
paradigm, we design transformation templates specially suitable for ex-
pressing structure-preserving transformation, eliminating the need for
explicit recursive calls. Also, we allow nesting of templates for making
use of an n-ary query that depends on previously selected n− 1 nodes.

For the implementation, we have developed an efficient evaluation strat-
egy for n-ary MSO queries, consisting of (a) an exploitation of MONA
system for the translation from MSO to tree automata and (b) a linear
time query evaluation algorithm for tree automata. The latter is similar
to Flum-Frick-Grohe algorithm locating n-tuples of sets of nodes, except
that our query is specialized to querying tuples of nodes and employs
partially lazy set operations for attaining a simpler implementation with
a fewer number of tree traversals. Our preliminary experiments confirm
that our strategy yields a practical performance.

1 Introduction

As an analogy to first-order logic being a basis for relational queries, monadic
second-order logic (MSO) has gradually stabilizing its position as a foundation
of XML processing. For example, there have been proposals for XML query
languages whose expressivenesses are provably MSO-equivalent [1, 2] and for
theoretical models for XML transformation with MSO as a sublanguage for
node selection [3, 4]. However, little attempt has been made for bringing MSO
logic formulae themselves into an actual language system for XML processing.

The goal of our work is to design and implement a practical XML transfor-
mation language called MTran based on MSO queries, in particular, addressing
the following two challenges:



– a surface language design for XML transformation that leverages the strength
of MSO queries, and

– an efficient algorithm to process MSO queries.

Our implementation of MTran is publicly available in http://arbre.is.s.
u-tokyo.ac.jp/∼kinaba/MTran/.

1.1 Why MSO?

MSO is first-order logic extended with second-order variables ranging over sets
of domain elements in addition to first-order variables ranging over domain el-
ements themselves. Among various variants, WS2S (Weak Second-order logic
with two Successors) is a kind of MSO specialized to express propositions over
finite binary tree structures. Why do we think that such logic is suitable for
writing queries on XML documents? The reasons are fourfold.

– The class of all regular queries can be captured.
– No explicit recursions are needed to locate nodes distant from context nodes.
– There is no need to mention the nodes that are irrelevant to the query

(“don’t-care semantics”).
– N -ary queries are naturally expressible.

While existing languages such as path expressions [5–7], pattern matches [8, 9],
and monadic datalog queries [2] have some of these properties, MSO is the only
language that has all of them, as we argue below (the summary is in Table 1).

Regularity A query over trees is called regular when there is an equivalent tree
automaton with an appropriate alphabet (Section 4.1). MSO is known to be
able to express all regular queries [10], while most of existing path-based node
selection languages (including XPath [5], currently the most popular path lan-
guage) do not have this property. This lack of regularity does not only indicate
theoretical weakness, but also has a practical impact since it fails to represent
even slightly complicated conditions. An obvious example is that one cannot
write “select every node that conforms to a specified schema for XML” since
schemas written in usual schema languages like DTD [11], XML Schema [12],
and RELAX NG [13] heavily rely on regular expressions for trees (in particu-
lar, RELAX NG schemas can represent any regular tree languages). As a more
realistic example, the following query

Regularity No Recursion Don’t care N-ary

Pattern
√ √

Path
√ √

Datalog
√ √

MSO
√ √ √ √

Table 1. Comparisons between query languages



“select, from an XHTML document, every <h2> node that appears be-
tween the current and the next <h1> node in the document order”

is naturally expressible in MSO as we will see in Section 2.1, whereas it is not
in most path languages.

No recursion The way that MSO formulae express retrieval conditions is, in a
sense, “logically direct.” In particular, it does not require recursively defined con-
straints for reaching nodes that are located in arbitrarily deep positions. Several
query languages such regular expression patterns and monadic datalog, while
being able to capture all regular queries, incur recursive definitions for deep
matching. As a result, even an extremely simple query like “select all <img>
elements in the input document” needs an explicit recursion. Writing down re-
cursion is often tedious work and in particular unfriendly to naive programmers;
it is much more helpful to be able to express such a simple query like

x in <img>

(“node x that has label img”) in MSO.

Don’t-care semantics The directness of MSO also allows us to completely avoid
mentioning nodes that are irrelevant to the query. It is in contrast to some lan-
guages such as regular expression patterns, where we need to specify conditions
that the whole tree structure should satisfy. For example, consider retrieving
the set of nodes x containing at least one child node labeled <date>. In regular
expression patterns, we would write as follows

x as ~[Any, date[Any], Any]

where we have to “mention” the siblings and the content of the <date> node by
the wild card Any to complete the pattern. In MSO, on the other hand, we can
write in the following way

ex1 y: x/y & y in <date>

(“node x where some node y is a child of x and has label date”) where we only
refer to the nodes of our interest: the node x itself and the child <date> node
y. No condition is ever explicitly specified for other irrelevant nodes, even by
wildcards. This “don’t-care semantics” might not be advantageous for specifying
a very complicated constraint such as conformance to a schema, while it makes
most of usual queries extremely concise. (Although the MSO formula in the
above example is not much smaller than the pattern, we will later see plenty of
MSO examples that express various complicated queries with remarkably small
formulae. Theoretically, it is known that MSO formulae can in general be hyper-
exponentially smaller than their equivalent regular expressions [14].)



N -ary queries An n-ary query locates n-tuples of nodes of the input XML tree
that simultaneously satisfy a specified condition. MSO, as it is a formal logic,
can naturally express n-ary queries by formulae with distinct n free variables.
For example, the following ternary query

ex1 p: ((p/x & p/y & p/z) & (x<y & y<z) & y in <item>)

expresses the condition for three nodes x, y, and z that they share a common
parent node p, that they appear in this order, and that the node y is tagged
with <item>. Although path-based query languages like XPath suit to express
binary queries (that is, relations between a previously selected node—i.e., context
node—and another node), they cannot represent general n-ary queries. Similarly,
monadic datalog can express arbitrary unary MSO formulae but not any higher-
arity queries.

1.2 XML Transformation with MSO

MSO by itself is thus a powerful specification language for node selection. How-
ever, our aim is to further make use of MSO formulae for the transformation of
XML documents. Then, the question is: what is a language design principle that
fully exploits the high expressive power of MSO?

Structure-preserving transformation Since it is one of MSO’s advantages that we
can select nodes in any depth with no explicit recursions, it would paradigmat-
ically be smooth if we can also express a transformation of trees of any depth
without any recursions. Suppose we want to enclose with a <li> every <ul> el-
ement whose parent is also an <ul> element. (Direct nesting of <ul> elements is
a common mistake in representing nested lists in XHTML. The transformation
is intended to correct it and emits a valid XHTML document.) In our language,
this transformation can be written by the following one line:

{visit x :: <ul>/x & x in <ul> :: li[x]}
Here, we first select every <ul> element with a <ul> parent by the MSO for-
mula “<ul>/x & x in <ul>” and then transform each selected <ul> element
accordingly to the associated rule, i.e., enclose the element by the <li> tag. The
whole output is the reconstruction of the input tree where each selected element
is replaced by the result of its local transformation.

Compare the above program in our language with the same transformation
written in XSLT [15]:

<xsl:stylesheet version="1.0" ...>
<xsl:template match="ul[parent::ul]">
<li><ul><xsl:apply-templates select="@*|node()"/></ul></li>

</xsl:template>
<xsl:template match="@*|node()">
<xsl:copy><xsl:apply-templates select="@*|node()"/></xsl:copy>

</xsl:template>
</xsl:stylesheet>



List[ {gather p :: p in <map> ::

{gather n :: p/<name>/n ::

{gather v :: p/<value>/v :: Pair[ n ", " v ] }}}]

Fig. 1. A transformation using binary queries

In this, after selecting a <ul> element, we create a <li> element containing a
<ul> element and then explicitly make a recursive application of the template
to the child nodes (<xsl:apply-templates/>) for computing the content of the
<ul> element. Our design principle is to eliminate such explicit recursion and
thus avoid the necessity to follow the data flow for understanding the program,
which makes transformation more intuitively readable and writable for naive
programmers. Also, in XSLT, we need an explicit template that recursively copies
all unremarked nodes. However, as discussed in the preceding section, one of the
benefits of MSO is its don’t-care semantics that allows us to avoid mentioning
irrelevant nodes. We further push this merit to our transformation language:
our visit expressions implicitly copy all irrelevant nodes so as not to bother
programmers with writing recursion.

Choice of visit and gather While a visit expression retains in the result
the nodes that are not matched, we provide another choice of treating such
unmatched nodes, namely, dropping them by using a gather expression. It is
important to be able specify which to use in each use of an MSO formula since
real transformations almost always need a fine control on the structure of the
output. As an example, the following

<ul> {gather x :: x in <a> :: li[x]} </ul>

is similar to the previous example except that it uses gather instead of visit.
The result is a ul element containing the list of all <a> elements appearing in
the input XML, each wrapped by a <li> element.

Nested templates XSLT uses XPath binary queries for selecting a node with re-
spect to a single previously selected node. Our language generalizes this approach
for exploiting MSO’s capability to express general n-ary queries. Specifically, we
allow templates to be nested and an inner MSO formula to refer to variables
that are bound in outer templates. For example, see the program in Figure 1.
This program converts a document representing a one-to-many mapping, e.g.,

<o2m><map><name>Hello</name><value>1</value><value>2</value></map>

<map><name>World</name><value>3</value><value>4</value></map></o2m>

to another representing a many-to-many mapping:

<m2m><P>Hello,1</P> <P>Hello,2</P> <P>World,3</P> <P>World,4</P></m2m>



Notably, in the inner-most selection condition for the variable v, which appears
inside the scope that selects a node for n, we directly refer to the variable p
that is bound in the two-block outer scope. Note that such flexibility, which
is not present in XSLT, can naturally be obtained by the combination of logic
formulae with free variables and nested templates with lexical scoping. Note also
that this example only uses binary queries, but it is clear that we can also specify
higher-arity queries in the same framework.

1.3 MSO Evaluation Algorithm

In order to implement a practical system for our language, we critically need an
efficient evaluation algorithm for n-ary MSO queries, that is, an algorithm that
takes, as inputs, an MSO formula with n free variables and a tree structure, and
returns the set of n-tuples of nodes that satisfy the formula.

A slightly more detailed explanation is needed on the motivation. Programs
in MTran actually do not directly select tuples of nodes that simultaneously
satisfy a given condition, but select nodes that satisfy the condition relative to
nodes already selected by previous queries. An n-ary query algorithm is still
useful for this purpose and indeed crucial. To illustrate this, let us see again the
example in Figure 1. First of all, notice that we could process each query using
only a unary query algorithm. That is, we first locate all the <map> elements in
the input document. Then, for each <map> element, we execute the inner formula
p/<name>/n, interpreting it as a unary query on the variable n under the fixed
binding of the variable p to the map element. Unfortunately, this strategy is
inefficient since the above formula is evaluated as many times as the number of
the <map> elements appear in the input document; since a unary query takes
a linear time in the size of the input, the binary query that we wanted would
take a quadratic time. Fortunately, if there is an efficient n-ary query algorithm,
this can be improved: evaluate the above formula only once for locating all pairs
of an element and a <name> element that are in the parent-child relation. This
observation has first been made by Berlea and Seidl [16] in the context of their
language based on binary queries, and can easily be extended to our case with
n-ary queries.

We have therefore developed an efficient implementation strategy for n-ary
MSO queries. This consists of usual two steps: (1) compilation of MSO formulae
to tree automata and (2) evaluation of n-ary queries represented by tree au-
tomata. The first step is well known to take a non-elementary time in the worst
case. Our approach is to exploit the MONA system [17], which has an estab-
lished reputation in its compact and efficient representation of MSO formulae
by tree automata with binary decision diagrams and is experimentally shown
to work quickly for large formulae even of dozens of kilobytes. Our preliminary
experiments confirm that, for many typical examples of XML queries, MONA
yields adequate performance (Section 5).

For the second step, we have developed an efficient linear-time algorithm for
n-ary MSO queries. This algorithm is similar to the one developed by Flum,
Frick, and Grohe [18]. However, while they treat general MSO queries with



second-order free variables, our language only needs queries with first-order free
variables and therefore we specialize their algorithm to our simpler case. In
addition, we employ a novel implementation technique called partially lazy op-
erations on sets of nodes, by which we obtain a simpler implementation with a
fewer number of traversals on the input tree.

1.4 Related Work

DTL [3] and its generalization TL [4] are theoretical models for XML transfor-
mation that use MSO formulae for node selection. However, their goals are to
find theoretical properties of transformation models (such as decidability of pre-
cise typechecking, which is not known for our language) whereas ours is to obtain
a concrete design and an efficient implementation technique for a transforma-
tion language leveraging the full strength of MSO. Indeed, we have incorporated
a number of design considerations not present in their languages. Specifically,
our language allows transformation of arbitrarily deep trees without recursion,
while theirs incurs explicit recursion; ours provides the choice of retaining and
dropping for nodes not selected by queries, while theirs allows only the second;
ours allows nested templates to make use of n-ary queries, while theirs is limited
to binary queries.

Finding a fast algorithm for MSO queries has been a topic attracting nu-
merous researchers. Early work by Neven and van den Bussche has described
a linear-time, two-pass algorithm for unary queries based on boolean attribute
grammars [19]. Then, Flum, Frick, and Grohe have solved the general case by
showing a linear-time, three-pass algorithm [18]. Notably, their algorithm’s time
complexity is linear both in the sizes of the input and the output. Afterward
(apparently not noticing the last work), several other algorithms have been pub-
lished that either have higher complexity or have linear-time complexity with
only restricted cases treated [2, 16, 20], though each of these has made orthogonal
efforts in either implementation or theory. As already mentioned, our contribu-
tion with respect to Flum-Frick-Grohe algorithm is the technique using partially
lazy set operations for a simpler and quicker (by constant factor) implementation
with concrete experimental results.

Outline In the rest of this paper, Section 2 gives some slightly bigger example
programs for illustrating the strength of MSO and MTran. Then, Section 3 in-
troduces the syntax and semantics. Section 4 briefly overviews our evaluation
strategy and Section 5 shows the results of our preliminary performance evalu-
ation.

2 Examples

As it is stated in the introduction, MSO queries has four strength, namely,
regularity, no-recursion, don’t-care semantics, and natural N -ary queries. In this
section, we give several example templates written in MTran and demonstrate
its expressiveness.



pred subheading( var1 a, var1 b, var2 B, var2 A ) =

b in B & a<b & all1 x: (a<x & x in A => b<x);

{visit b :: b in <body> :: body[

ul[ {gather h2 :: h2 in <h2> ::

li[ {gather t :: h2/t :: t} ul[

{gather h3 :: subheading(h2,h3,<h3>,<h2>) ::

li[ {gather t :: h3/t :: t} ul[

{gather h4 :: subheading(h3,h4,<h4>,<h3>) ::

li[ {gather t :: h4/t :: t} ul[

{gather h5 :: subheading(h4,h5,<h5>,<h4>)::

li[ {gather t :: h5/t :: t} ]} ]]} ]]} ]]} ]

{gather c :: b/c :: c} ]}

Fig. 2. Example: Table of Contents

2.1 XHTML Table of Contents

The example shown in Figure 2 is a template to add a table of contents to
a given input XHTML document. It retrieves the heading elements from the
input document, constructs a tree of itemized lists that reflect the hierarchical
structure of the input, and prepends it to the original document. Note that
the original document contains the flat structure of h2, h3, h4, and h5 and we
turn this implicit hierarchy to an explicit one using nested ul itemizations. For
example, the template transforms the input

<html><head><title>Title</title></head><body><h1>Title</h1>

<h2>Chapter 1</h2>

<h3>Section 1.1</h3> <p>The quick</p>

<h4>Section 1.1.1</h4> <p>brown fox</p>

<h3>Section 1.2</h3> <p>jumps over</p>

<h2>Chapter2</h2> <p>the lazy</p>

<h3>Section 2.1</h3> <p>dog.</p>

</body></head>

to the following XHTML document:

<html><head><title>Title</title></head><body>

<ul><li>Chapter 1 <ul>

<li>Section 1.1 <ul>

<li>Section 1.1.1 <ul/></li>

</ul></li>

<li>Section 1.2 <ul/></li>

</ul></li>

<li>Chapter 2 <ul>

<li>Section 2.1 <ul/></li>

</ul></li> </ul>

(...the same content as the input follows...)

</body></head>



The template begins with the macro subheading(a,b, B,A) intuitively mean-
ing the following:

“The node b belongs to the set B and appears after the node a and before
any nodes x in the set A that occur after a in the document order (<)”

For example, we use this macro as a query subheading (h2,h3,<h3>,<h2>) to
collect all nodes h3 that are labeled <h3> and appears between the current node
h2 and the next node labeled <h2> if such <h2> exists, or otherwise all <h3> nodes
that appear after the current h2. (Here, <h2> and <h3> are constants respectively
denoting the sets of nodes labeled <h2> and <h3>.) In other words, it gathers
all sections (<h3>) in the current chapter (<h2>). Although each sub-relation—
“a node is labeled B”, “a node appears after another node in document order”,
and so on—is standard in usual XML query languages, their combination as in
the subheading predicate is not commonly expressible; in particular, XPath is
incapable of this since, essentially, XPath cannot express universal quantification.

The main template expression has the following structure. Let us focus on
the subexpression treating h3 elements:

ul[ {gather h3 :: subheading(h2,h3,<h3>,<h2>) ::
li[ {gather t :: h3/t :: t} ... ]} ]

By the query subheading(h2,h3,<h3>,<h2>), we collect all h3 elements that
are subheadings of already selected h2 elements. For each selected h3, we gen-
erate a list item with its content to be the copies of all child elements ({gather
t::h3/t::t}) of the h3 element. Inside each list item, we nest the result of a
similar transformation on h4 and so on, constructing the whole hierarchy.

2.2 MathML Conversion

MathML is a standard XML format to markup mathematical expressions, whose
elements fall into two categories, namely, content-markup elements for repre-
senting syntactic structure of expressions and presentation-markup elements
for encoding their visual rendering. For example, a mathematical expression
(2 + 3)× (4 + (5 + 6)) is written in content markup as follows:

<apply> <times/>

<apply> <plus/> <cn>2</cn> <cn>3</cn> </apply>

<apply> <plus/>

<cn>4</cn>

<apply> <plus/> <cn>5</cn> <cn>6</cn> </apply>

</apply>

</apply>

The MTran program shown in Figure 3 converts a content markup contain-
ing only <plus/> and <times/> as operators to a presentation markup, where
we minimize the number of occurrences of parentheses, based on the standard
priority rules for operators. For instance, the above XML is converted to the
following XML in presentation markup with no redundant parentheses:



pred follows( var1 x, var1 y ) = ex1 p: (p/x & p/y & x<y);

pred need_paren( var1 ap ) =

ap/<plus> & ex1 op: (follows(op,ap) & op in <times>);

mrow[ {visit x

:: x in <cn> :: mn[ {gather y :: x/y :: y} ]

:: x in <apply> & need_paren(x) ::

mo["("] {gather y::firstChild(x,y)::y} mo[")"]

:: x in <apply> :: {gather y :: firstChild(x,y) :: y}
:: x in <plus> :: {gather y :: nextSibling(x,y) ::

y {gather z :: follows(y,z) :: mo["+"] z}}
:: x in <times> :: {gather y :: nextSibling(x,y) ::

y {gather z :: follows(y,z) :: mo["*"] z}} }]

Fig. 3. Example: MathML Conversion

<mrow>

<mo>(</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>)</mo><mo>*</mo><mo>(</mo>

<mn>4</mn><mo>+</mo><mn>5</mn><mo>+</mo><mn>6</mn><mo>)</mo>

</mrow>

The first macro follows(x,y) means that the nodes x and y share the same
parent (p) and x appears before y in the document order. That is, the node x is
one of the preceding siblings of the node y. The second macro need_paren(ap)
takes an <apply> node as the parameter ap and determines whether it is re-
quired to enclose the expression with parentheses. The rule here is that we need
parentheses only when the operation used in the ap node is <plus> and the outer
operation (op) is <times>.

The template generates a <mrow> element, in which we use a visit ex-
pression to visit all elements in the input document, apply the transformation
with associated sub-templates, and glue them up into the output document.
When an <apply> element is found (x in <apply>), we emit parentheses if
need_paren(x) is true and then extract, by a gather expression, the first child,
which is either a <plus> or a <times> node. At a <plus> node, we construct a
sequence of addition expressions. In this, we first emit the first operand (which
is obtained by nextSibling(x,y)) and then each remaining operand (which is
extracted by follows(y,z)) prepended with the symbol mo["+"]. We process
a <times> node in a similar way.

The example shows the power of visit expressions. That is, we have only
specified a local transformation on each node in the input without involving
any explicit recursive traversal. Nevertheless, the program can perform a whole-
document conversion where the presentation markups in the output document
preserve the original structure of the content markups in the input document.



2.3 Linguistic Queries

This application is taken from a motivating example of LPath language devel-
oped by Bird, Chen, Davidson, Lee, and Zheng [21]. LPath is an extension to
XPath that supports linguistic queries. In the field of linguistics, parsed sen-
tences are commonly represented as labeled trees. An example of such tree looks
like:

<S>

<NP>I</NP>

<VP>

<V>saw</V>

<NP>

<NP><Det>the</Det><Adj>old</Adj><N>man</N></NP>

<PP>

<Prep>with</Prep>

<NP><Det>a</Det><N>dog</N></NP>

</PP>

</NP>

</VP>

<N>today</N>

</S>

The authors of LPath argued that there are mainly three requirements for lin-
guistic queries: “subtree scoping” that restricts the scope of queries in a specified
subtree, “edge alignment” condition to state whether a node is leftmost (or right-
most) within a particular subtree, and “immediately follow” relationship. A node
q is said to immediately follow p when p appears immediately after q in some
proper analysis [22], where a proper analysis is a sequence obtained by several
reverse applications of given grammar productions to a given sentence, e.g., NP
saw NP today is an example of proper analysis for the sentence “I saw the old
man with a dog today.”

LPath extends XPath to support the three features above, and enables us
to write many queries that are not expressible in XPath. The authors give the
following as test cases:

Q1 Find noun phrases that immediately follow a verb.
Q2 Within a given verb phrase, find nouns that follow a verb which is a child

of the verb phrase.
Q3 Find all verb phrases that are comprised of a verb, a noun phrase, and a

prepositional phrase.

All these queries are already expressible in our MSO queries without any
extensions as shown in Figure 4. In LPath implementation, “immediately follow”
relation was defined algorithmically and its equivalence to the definition based
on proper analyses needed to be proved. Using second-order variables, we can
define the relation directly in terms of the concept of proper analyses. First we
prepare a macro to assert that a set A is a proper analysis.

pred proper(var2 A) = all1 x: (x in A <=> ~(A//x | x//A));



That is, a proper analysis A is a set of positions such that for any node x, if x
belongs to A then all ancestors and descendants of x do not belong to A, and
otherwise there exists an element of x being an ancestor or a descendant of
x. Using this macro, the “p immediately follows q” relation can be expressed
directly through the definition “in some proper analysis p appears immediately
after q.”

pred imm_follow(var1 x, var1 y) =
ex2 A: (proper(A) & x in A & y in A & x<y

& ~ex1 z:(z in A & x<z & z<y));
pred follow(var1 x, var1 y) =
ex2 A: (proper(A) & x in A & y in A & x<y);

The imm follow relation can be directly read as “in some proper analysis A that
contains both x and y, there exists no z appearing between x and y (i.e., y
appears just after x.”) By virtue of the existence of second-order variables, the
condition like “in some proper analysis” is naturally representable as ex2 A:
(proper analysis(A) ...) in MSO.

pred leftmost(var1 x) = ~ex1 y: nextSibling(y,x);

pred rightmost(var1 x) = ~ex1 y: nextSibling(x,y);

pred lmd(var1 a, var1 d) =

a//d & all1 x:(a//x//d | x=d => leftmost(x));

pred rmd(var1 a, var1 d) =

a//d & all1 x:(a//x//d | x=d => rightmost(x));

pred comp(var1 c, var1 y1, var1 y2, var1 y3) =

lmd(c,y1) & imm_follow(y1,y2) & imm_follow(y2,y3) & rmd(c,y3);

pred Q1(x) = ex1 v:(v in <V> & imm_follow(v,x) & x in <NP>);

pred Q2(x) = ex1 vp: ex1 v:

(vp:<VP>/v:<V> & follow(v,x) & vp//x:<N>);

pred Q3(x) = ex1 v: ex1 np: ex1 pp:

(v in <V> & np in <NP> & pp in <PP> & _ in <VP>

& comp(_,v,np,pp));

test[ Q1[ {gather x :: Q1(x) :: x} ]

Q2[ {gather x :: Q2(x) :: x} ]

Q3[ {gather x :: Q3(x) :: x} ] ]

Fig. 4. Example: Linguistic Queries



2.4 Relax NG Simplification

RELAX NG specification [13] defines several simplification rules for transforming
a RELAX NG schema into a simpler syntax. Although many of the transforma-
tions are easily realizable in traditional XML transformation languages, some of
them require a more sophisticated approach. We take up their “empty element”
rule as an example. The empty element in RELAX NG means an empty sequence
of nodes. Here is an excerpt from their specification:

In this rule, the grammar is transformed so that an empty element does
not occur as a child of a group, interleave, or oneOrMore element
or as the second child of a choice element. A group, interleave or
choice element that has two empty child elements is transformed into
an empty element. A group or interleave element that has one empty
child element is transformed into its other child element. A choice ele-
ment whose second child element is an empty element is transformed by
interchanging its two child elements. A oneOrMore element that has an
empty child element is transformed into an empty element. The preceding
transformations are applied repeatedly until none of them is applicable
any more.

Without a sufficiently expressive query language, achieving the desired result
requires us to really repeat the above transformations many times until none
of them is applicable any more. By using MSO’s ability to capture all regular
queries, we can write the condition whether a node should finally be converted
to an empty element, as follows:

pred convertible_to_empty(var2 E) =
all1 x: (x in E <=>

x in <empty>
| x in <group> & all1 y:(x/y => y in E)
| x in <interleave> & all1 y:(x/y => y in E)
| x in <choice> & all1 y:(x/y => y in E)
| x in <oneOrMore> & all1 y:(x/y => y in E);

pred emp(var1 x) =
ex2 E: (convertible_to_empty(E) & x in E);

Using the predicate, the empty element simplification can be executed as a
one-pass transformation, which is more efficient than repeated transformations.
Figure 5 shows a template implementing it. We assume that the input is a valid
RELAX NG schema, and that each group or interleave node has exactly two
children. If a node x is convertible to empty, then we output an empty node. Oth-
erwise, if x is a group or interleave element with an empty child, we translate
the node to the other child that is non-empty. If the node x is a choice node,
then we bring the empty child in the beginning, as stated in the simplification
rule. Any other node is kept unchanged (which is ensured by the semantics of
visit).



{visit x

:: emp(x) ::

empty[]

:: (x in <group> | x in <interleave>) & ex1 y:(x/y & emp(y)) ::

{gather y :: x/y & ~emp(y) :: y}
:: x in <choice> ::

choice[ {gather y :: x/y & emp(y) :: y}
{gather y :: x/y & ~emp(y) :: y} ] }

Fig. 5. empty element simplification

The example above shows the advantage of no-recursion of both MSO and
our semantics of visit expressions. Regular expressiveness of MSO enables us to
check whether a node is convertible to empty by a single query emp(x), without
writing any explicit recursive tree traversals. The semantics of visit expressions
eliminates the necessity to explicitly write down a recursive application of the
transformation in the template for group, interleave, and choice elements.
Without our implicit recursion semantics, we would have to specify that we need
to recursively transform gathered elements y.



3 Language Definition

3.1 Binary Trees and XML representation

Throughout this paper, we assume a fixed, finite alphabet Σ where each σ ∈ Σ
is called symbol. A binary tree t over Σ is a mapping from a finite prefix-closed
set Pos(t) ⊆ {l, r}∗ to Σ. We call an element p ∈ Pos(t) a position or a node
of t, and the symbol t(p) ∈ Σ assigned to p the label of p. The empty sequence
node ε is called the root of t.

We handle input XML as binary trees, using a well-known encoding of un-
ranked trees (trees whose each node has an arbitrary number of child nodes) by
binary trees. That is, the first child and the right neighboring sibling of each node
in the unranked tree are, respectively, encoded by the left and the right children
of the corresponding node in the binary tree. In addition, a real XML document
has three types of node—element, attribute nodes, and text nodes. For this, we
first assume the alphabet Σ to consist of element names written <e>, attribute
names written @a, and texts written "s". Then, we insert attribute nodes before
the other element or text nodes of their belonging element node. 1

3.2 Query Expressions

This section describes MTran’s query sublanguage based on MSO. We first
present the core syntax and semantics and then introduce some syntax sugars.

Assume a set of first-order variables, ranged over by x, and a set of second-
order variables, ranged over by X. The following defines the syntax for first-order
terms p, second-order terms S, and MSO formulae ϕ.

p ::= x | root S ::= X | σ

ϕ ::= p in S | p = p | S = S | ~ϕ | ϕ&ϕ | ϕ|ϕ | ϕ=>ϕ | ex1 x:ϕ | all1 x:ϕ

| ex2 X:ϕ | all2 X:ϕ | firstChild(p,p) | nextSibling(p,p)

A formula ϕ is interpreted in terms of a binary tree t over Σ, a first-order
assignment γ (mapping each first-order variable to an element of Pos(t)), and
a second-order assignment Γ (mapping each second-order variable to a subset
of Pos(t)). A first-order term denotes a node in the tree t, and a second-order
term denotes a set of nodes. Each symbol σ ∈ Σ works as a constant denoting
the set of nodes labeled with σ.

The formulae p in S means that the node denoted by p belongs to the set de-
noted by S. The operators =, ~, &, |, and => are the standard operators for equal-
ity, negation, conjunction, disjunction, and implication. The constructs ex1 and
1 Although we formalize binary trees on top of the fixed alphabet Σ, actual input

XML documents may have arbitrary labels possibly not belonging to Σ. To treat
this, we always add an extra, distinguished symbol others to Σ, and rename any
label in input trees not belonging to Σ as an others.



all1 (ex2 and all2) are existential and universal quantifications over first-order
(second-order, respectively) variables. The last two constructs are the primitive
predicates to relate tree nodes. That is, firstChild(p,q) (secondChild(p,q))
holds if and only if q is the first child (the next sibling, respectively) of node p.

Formally, the semantics of our query expression is defined as follows:

Definition 1. Let t be a binary tree over Σ. Under a first-order assignment γ,
first-order terms are interpreted as follows:

γ[x] = γ(x)
γ[root] = ε

Also, under a second-order assignment Γ , second-order terms are interpreted as
follows:

Γ [X] = Γ (X)
Γ [σ] = {p | t(p) = σ}

An MSO formula ϕ is interpreted under a binary tree t over Σ, a first-order
assignment γ, and a second-order assignment Γ , as follows:

t, γ, Γ ² p1=p2 ⇐⇒ γ[p1] = γ[p2]
t, γ, Γ ² S1=S2 ⇐⇒ Γ [S1] = Γ [S2]
t, γ, Γ ² p in S ⇐⇒ γ[p] ∈ Γ [S]
t, γ, Γ ² ~ϕ ⇐⇒ t, γ, Γ 6² ϕ

t, γ, Γ ² ϕ1&ϕ2 ⇐⇒ t, γ, Γ ² ϕ1 and t, γ, Γ ² ϕ2

t, γ, Γ ² ϕ1|ϕ2 ⇐⇒ t, γ, Γ ² ϕ1 or t, γ, Γ ² ϕ2

t, γ, Γ ² ϕ1=>ϕ2 ⇐⇒ t, γ, Γ ² ϕ1 implies t, γ, Γ ² ϕ2

t, γ, Γ ² ex1 x:ϕ ⇐⇒ for some a ∈ Pos(t) t, γx:=a, Γ ² ϕ

t, γ, Γ ² all1 x:ϕ ⇐⇒ for all a ∈ Pos(t) t, γx:=a, Γ ² ϕ

t, γ, Γ ² ex2 X:ϕ ⇐⇒ for some A ⊆ Pos(t) t, γ, ΓX:=A ² ϕ

t, γ, Γ ² all2 X:ϕ ⇐⇒ for all A ⊆ Pos(t) t, γ, ΓX:=A ² ϕ

t, γ, Γ ² firstChild(p1,p2) ⇐⇒ γ[p1].l = γ[p2]
t, γ, Γ ² nextSibling(p1,p2)⇐⇒ γ[p1].r = γ[p2]

Here, γx:=a is an assignment that is identical to γ except that it maps the
variable x to a; similarly for ΓX:=A. The dot operator . used in the definition
of firstChild and nextSibling denotes the concatenation of sequences from
{l,r}∗.

Programmers can define macros in the form

pred m(V , · · · ,V ) = ϕ;

where m is a macro name and each V has either the form “var1 x” or “var2 X”,
i.e., a first- or a second-order parameter declaration. Accordingly, we augment



the syntax of formulae with the macro-call form m(T, · · · ,T) where each T is a
variable whose order matches the corresponding variable declaration in m’s defi-
nition. A macro call is expanded to its definition whose each parameter variable
is replaced by the corresponding supplied argument. Macros are useful not only
for concise description of queries, but also for efficient static processing by sep-
arate compilation. Note that macro definitions themselves cannot be recursive.

Our core syntax has only two primitive relations on tree nodes, firstChild
and nextSibling, reflecting our binary-tree encoding of XML. For convenience,
however, we provide more compact notations based on the unranked view of
the input XML tree and an XPath-like syntax sugar. We extend the syntax of
formulae with the form UDUD · · ·DU , where D is path delimiters either of the
form / or //, and U is either a first-order term p or a second-order term S. The
expression p/q (and p//q) means that the node denoted by p is the parent (and
an ancestor, respectively) of the node denoted by q in the original unranked tree.
Since the unranked parent-child relation and the ancestor-descendant relation
are indeed expressible in MSO, our implementation internally converts those
syntax-sugars to equivalent plain MSO formulae. When a second-order term is
postfixed to a path expression, it has an existential meaning. For example, p/<a>
is a shorthand for ex1 x:p/x & x in <a>. Connecting three or more terms by
path delimiters means conjunction. For example, x/y/z stands for x/y & y/z.

Another frequently used primitive is the pre-order relation (often called doc-
ument order relation) among tree nodes. This relation is also MSO-expressible
and provided as a short-hand: p < p.

3.3 Transformation Templates

This section defines the MTran language itself, which embeds our MSO-based
query sublanguage given above.

Overview The most important constructs in MTran are gather and visit ex-
pressions. A gather expression gathers all nodes in the input tree that satisfy
the specified MSO query expression. For example, the template

{gather x :: x in <B> :: x}
with the input

<A> <C><B>eee</B></C>
<B><C><B>fff</B></C></B> </A>

is evaluated to the list of nodes:

<B>eee</B>
<B><C><B>fff</B></C></B>
<B>fff</B>

Note that we gather all nodes that match the query regardless of their inclusion
relations. When we want only the outermost nodes, we explicitly specify so:



{gather x :: x in <B> & ~<B>//x :: x}
This query states “x is labeled B and none of the ancestors of x is labeled B,”
and therefore only the outermost B nodes are gathered. A query to retrieve only
the innermost nodes can also be written similarly.

A visit expression, on the other hand, visits every node that satisfies the as-
sociated query formulae and appears in the subtree specified by the from clause.
Each node that is matched by one of the queries is transformed according to
the corresponding template, and the other unmatched nodes are left unchanged.
This is roughly the semantics of our visit expressions. However, there are sub-
tle details. When we evaluate each visit expression, we actually distinguish
four kinds of nodes that are encountered during the traversal—matched nodes,
unmatched nodes, newly generated nodes, and already-processed nodes—and
take a different action for each. To illustrate this, let us consider the following
template for enclosing each B node in a X tag:

{visit x from root :: x in <B> :: X[x]}
By this template, the same input document used in the above example of gather
is transformed to the result:

<A> <C><X><B>eee</B></X></C>
<X><B><C><X><B>fff</B></X></C></B></X> </A>

Each A or C node is unmatched, for which we simply copy it and proceed to its
child nodes. Then, each B node is matched, for which we evaluate the subtemplate
X[x] with x bound to the node itself, and then traverse again the generated
tree. During the traversal, we will encounter the B node that has already been
processed as well as the newly generated X node; we simply copy both of them.
In the same traversal, we will also encounter another B node that has not yet
been seen, for which we apply the subtemplate X[x] in the same way as above.

To justify the above design choices, the reason for copying unmatched nodes is
clear: we can release the programmer from explicitly writing recursion for search-
ing and transforming deeply located nodes. The reason for retraversing gener-
ated trees is that, otherwise, we cannot transform matched nodes that appear
inside another matched node, unless we explicitly write a recursive application—
this design is again for our intention to avoid any recursion. Finally, copying
already-processed nodes and newly generated nodes is for simplifying the lan-
guage design. In particular, this can make the MTran language terminating and
transformable in one pass.

Syntax and Semantics A program consists of a list of user-defined macros and a
(template) expression, where expressions E and expression lists EL are defined
as follows.

EL ::= E∗

E ::= x | σ[EL] | {gather x :: ϕ :: EL} | {visit x from y (:: ϕ :: EL)∗}



The phrase “from y” can be omitted from a visit expression when y is root.
MTran internally handles two different forms of XML representation. The

first is the binary encoding of XML trees described in Section 3.1, which is
used in our query algorithm to represent input trees. The other is the internal
form, which is suitable for handling the above-mentioned subtle behavior of our
transformation templates. Internal trees I (trees in the internal form) are defined
as follows where p ∈ {0, 1}∗ ∪ {⊥}:

I ::= (σ[I∗], p)

The first component of an internal tree I represents a node in the unranked tree
structure, where σ is its label and I∗ is its children. (Note that this definition
may yield an invalid XML, such as non-text nodes inside attributes @x[@y[...]].
Such ill-formed XMLs are detected at runtime and result in an error.) The second
component p maintains the position where the node inhabited in the input tree.
In the case of a node that is not from the input tree (i.e. newly constructed
by a template), ⊥ is assigned. We use this positional information only for the
evaluation of visit expressions, which has to distinguish newly generated nodes
from nodes derived from the input tree. In the final output as an XML document,
the positional information is dropped.

The conversion function itl from a pair of a binary tree t and its node p into
the internal form is defined as follows

itl(t, p) = (t(p)[itl(t, p0), . . . , itl(t, pk)], p)

where pi = p.l

i︷ ︸︸ ︷
r · · · r (the dot . denotes concatenation) and k is the maximum

number such that pk ∈ Pos(t).
An expression or an expression list is interpreted under an input binary

tree t and a first-order variable assignment γ, and denotes a list of internal
trees. Concretely, an expression list E1 · · ·Ek denotes the concatenation of the
interpretations of E1, E2, · · · , and Ek:

JE1 . . . EkK(t, γ) = concat [ JE1K(t, γ), · · · , JEkK(t, γ) ]

Here, the notation [. . . ] represents a list and concat is the concatenation of all
the given lists. The interpretation of each expression is as follows:

JxK(t, γ) = [ itl(t, γ(x)) ]
Jσ[EL]K(t, γ) = [ (σ[JELK(t, γ)],⊥) ]

J{gather x::ϕ::EL}K(t, γ) = concat [ JELK(t, γx:=p)
∣∣ p ∈ Pos(t), γx:=p ² ϕ ]

J{visit x from y::ϕ1::EL1:: . . . ::ϕk::ELk}K(t, γ) = vis(Pos(t), itl(t, γ(y)))

where

vis(V, (σ[IL], p)) =



concat [vis(V \{p}, I)| I ∈ JEL1K(t, γx:=p)] if p ∈ V and t, γx:=p ² ϕ1

...
concat [vis(V \{p}, I)| I ∈ JELkK(t, γx:=p)] if p ∈ V and t, γx:=p ² ϕk

[(σ[concat [vis(V, I)| I ∈ IL]], p)] otherwise



In general, more than one case in the definition of vis may be applicable at a
time. In that case, the first one is chosen.

The notation [f(x) | x ∈ List (, a condition on x)] is a list comprehension.
First, the elements in the List that fail to satisfy the condition are filtered out.
Then the function f is applied to each remaining element and the result list
[f(xi1) · · · f(xin

)] is yielded. The set Pos(t) in gather’s semantics is treated
as a list of nodes ordered by the document order. All formulae in gather and
visit expressions are evaluated under an empty second-order variable assign-
ment (therefore omitted in the above definitions) since we only bind first-order
variables in transformation templates.

The vis function takes two parameters. The first parameter V denotes the set
of input nodes that are not yet processed in the current evaluation of the visit
expression. The second parameter denotes the node currently visited. If the node
is matched by one of the query formulae and has not yet been processed, then
it is replaced by the list of nodes generated from the associated template. Then,
again we recursively visit these generated nodes, recording the current node to
be already processed. If the node is matched by no query formula, has already
been processed, or has newly been generated, then we just recursively go down
in the tree.

4 Evaluation Algorithm

This section describes our evaluation strategy for MTran. In this, efficient eval-
uation of MSO query expressions is particularly critical and therefore explained
in detail. Our MSO evaluation consists of usual two steps: (1) compilation of
MSO formulae to tree automata and (2) evaluation of n-ary queries represented
by those tree automata. Below, we first review known facts on tree automata,
then formalize the above two steps, and finally briefly explain how to integrate
the query algorithm into our evaluation strategy for the whole language.

4.1 From MSO to Tree Automata

First of all, we formalize the notion of queries. An n-ary query for binary trees
over Σ is a function q that maps each tree t to a set of n-tuples of its positions.

A tree language over Σ is a set of trees. A query can also be defined in terms
of tree languages. Let B = {0, 1}. An n-ary query defined by a tree language L
over Σ × Bn is a function q such that

q(t) = {(v1, . . . , vn) ∈ Pos(t)n |
∃β1, . . . , βn : Pos(t) → B
∀i.∀v ∈ Pos(t).(βi(v) = 1 ⇐⇒ v = vi)
& t× β1 × · · · × βn ∈ L}

where the product t×s of trees is the function defined as (t×s)(v) = (t(v), s(v)).
Intuitively, each βi in the definition above represents selection marks correspond-
ing to the i-th members of tuples. That is, a query defined by a language L selects



a tuple (v1, . . . , vn) on a tree t if and only if L contains a tree where each βi

marks the element vi as 1 and the other elements as 0. Note that we only con-
sider selection marks that select exactly one node vi in an input tree. In general,
a tree language over Σ×Bn may contain a tree where βi marks no node or more
than one node. In our treatment, such a language defines exactly the same query
as the language with all ill-marked trees removed.

A bottom-up deterministic tree automaton over Σ is a tuple (Σ, Q, δ, q0, F )
where Q is a set of states, δ : Q × Q × Σ → Q is a transition function, q0 ∈ Q
is an initial state, and F ⊆ Q is a set of accepting states. A binary tree t is
accepted by a bottom-up deterministic tree automaton when there is a mapping
ρ : Pos(t) → Q such that ρ(ε) ∈ F and ρ(v) = δ(ρ(v.l), ρ(v.r), t(v)) for each
node v ∈ Pos(t). When v.l or v.r does not belong to the domain Pos(t), we use
q0 instead of ρ(v.l) or ρ(v.r).

Each tree automaton defines the tree language consisting of all trees accepted
by the automaton. Thus, we can regard a tree automaton over Σ × Bn as an
n-ary query over Σ. An n-ary query over Σ is regular if there exists a bottom-up
deterministic tree automaton that defines the query.

An MSO formula with n free first-order variables can naturally be seen as an
n-ary query. A formula ϕ(x) whose free variables are x = (x1, . . . , xn) defines
a query q(t) = {v ∈ Pos(t)n | t ² ϕ(v)}. It is well-known [10] that there is
an exact correspondence between MSO and tree automata. That is, for every
MSO formula with n free variables, there exists a bottom-up deterministic tree
automaton over Σ×Bn that defines the equivalent query. Also, for every bottom-
up deterministic tree automaton over Σ × Bn, there exists an equivalent MSO
formula with n free variables.

This equivalence allows us to compile a given MSO formula to an equivalent
automaton as the first step of MSO query evaluation. As mentioned in the intro-
duction, although this compilation step is known to take a non-elementary time
in the worst case, we can overcome this difficulty simply by employing MONA
[17]. Section 5 shows our experimental results supporting our claim.

4.2 N-ary Query Algorithm

This section is devoted to our n-ary query algorithm. First, Section 4.2 introduces
a basic algorithm that is essentially the same as the binary query algorithm
proposed by Berlea and Seidl, except that we reformalize it for general n-ary
queries. Section 4.2 presents our improvements to the algorithm.

Basic Algorithm Definition 4.1 yields a naive evaluation algorithm for n-ary
queries represented by tree automata. That is, for every n-tuple of nodes of a
given input tree t, generate the corresponding selection mark βi’s as in the defi-
nition and calculate the bottom-up run of the automaton. If the run is accepting,
the tuple belongs to the result set of the query. There can be |t|n n-tuples where
|t| is the size of the input tree, and each run of a tree automaton takes O(|t|)
time. So the total time complexity of this naive algorithm is O(|t|n+1).



This high time complexity can be improved by sharing intermediate results
among calculations of the runs corresponding to the n-tuples. Specifically, we
assign a set m(v, q) of n-tuples of nodes to each pair of a node v of the tree t and
a state q of the automaton. Intuitively, m(v, q) is the set of tuples satisfying that,
if the tree is marked according to the tuple, then the bottom-up run on the tree
reaches the state q at the node v. We call such m a marking run of the automaton.
For example, in a ternary query, the fact that (rl, r,⊥) ∈ m(r, q1) means that
the automaton reaches the state q1 at the node r, when the node rl is selected as
the first element, the node r is selected as the second element, and no node in the
subtree rooted at r is selected as the third element. Thus, a tuple here may have
a ⊥ component to mean “no selection yet.” A marking run can be calculated in
a bottom-up fashion where each m(v, q) is calculated from that of each child of
v. For example, suppose δ−1(q) = {((t(v), 00), qL1, qR1), ((t(v), 01), qL2, qR2))}.
We can then calculate m(v, q) as follows.

m(v.l, qL1) ∗m(v.r, qR1) ∗ {(⊥,⊥)}
∪m(v.l, qL2) ∗m(v.r, qR2) ∗ {(⊥, v)}

Here, the operator ∗ is a kind of “product” operation that combines two sets of
tuples, defined as follows:

S ∗ T = {(u1, · · ·, un) | (s1, · · · , sn) ∈ S, (t1, . . . , tn) ∈ T,

∀i.(ui = si & ⊥ = ti) or (⊥ = si & ui = ti)}

For example:
{(l,⊥), (⊥, l)} ∗ {(r,⊥)} = {(r, l)}

The left operand means that “(the node l is selected as the first element) or (the
node l is selected as the second element),” while the right operand means that
“r is selected as the second element.” There is only one possible way to collect
up these two conditions, namely, “the node r is selected as the first element and
the node l is selected as the second element.” This is what the asterisk product
∗ calculates.

According to the definition, we can calculate S ∗ T , by picking up each pair
of tuples (s, t) where s ∈ S and t ∈ T , and constructing the new tuple u. This
strategy, however, has an inefficiency. Every resulting tuple u ∈ S ∗ T comes
from a pair (s, t) such that non-bottom elements of s and t do not overlap (for
example, (r, l) is derived from ((⊥, l), (r,⊥))). Other pairs like ((l,⊥), (r,⊥))
are just discarded. This inefficiency is cured by introducing types over tuples
and classifying the tuples in m(v, q) by the types. This saving is crucial for
guaranteeing the linear-time complexity of our algorithm, as we discuss later.

Formally, we define marking runs as follows. We define each m(v, q) as a
disjoint union of sets ms(v, q), where s ∈ Bn. A sequence s of bits indicates non-
⊥ elements of the tuples in ms(v, q). That is, for (u1, . . . , un) ∈ ms1...sn(v, q),
we have ui 6= ⊥ if and only if si = 1 for every i. In other words, s indicates the
type of tuples contained in ms(v, q).



:b

l:a r:b

rl:b rr:b

Fig. 6. Example Tree

Definition 2. A marking run of a deterministic bottom-up tree automaton (Σ×
Bn, Q, δ, q0, F ) on a tree t is a set of functions m = {ms| s ∈ Bn}. Each ms

is a function of type {l, r}∗ × Q → 2({Pos(t)∪{⊥}})n

defined as follows. When
v /∈ Pos(t),

m0···0(v, q0) = {(⊥, . . . ,⊥)}
ms(v, q) = ∅ if s 6= 0 · · · 0 or q 6= q0

and when v ∈ Pos(t), it is recursively defined as

ms(v, q) =
⋃ {

ml(v.l, qL) ∗mr(v.r, qR) ∗ {sing(v, c)}
∣∣

qL, qR ∈ Q, l, r, c ∈ Bn,

δ(qL, qR, (t(v), c)) = q,

(l, r, c) ∈ sub(s)
}

(1)

Here, the tuple sing(v, c) is defined as the tuple (u1, . . . , un) where ui = v if
ci = 1 and ui = ⊥ if ci = 0. For each s ∈ Bn, we define sub(s) ⊆ (Bn)3 by the
set of triples (l, r, c) such that for all i, if si = 1 then exactly one of li, ri, and ci

is 1, and otherwise li = ri = ci = 0.

Using a marking run, we can obtain the query result as:
⋃

q∈F

m1...1(ε, q)

Example Let us illustrate the evaluation algorithm by the following example.
Consider the tree t over Σ = {a, b} depicted in Figure 6. (For clarity, we present
each node by a pair n:L where n is its position from {l, r}∗ and L is its label
from Σ) and the automaton (Σ × B2, Q, δ, q0, F ) with the set of states Q =
{q0, q1, q2, q3}, the accepting states F = {q2}, and the transition function δ
defined as follows:

δ(q0, q0, (s, 00)) = q0 for any s ∈ Σ

δ(q0, q0, (b, 01)) = q1

δ(q0, q1, (b, 10)) = q2

δ(q0, q2, (s, 00)) = δ(q2, q0, (s, 00)) = q2 for any qi ∈ Q, s ∈ Σ



δ(qi, qj , x) = q3 for any other cases

This automaton defines a binary query that selects all pairs of a node and its
right child both labeled b, i.e. (ε, r) and (r, rr) for the above tree. Intuitively, q0

represents the starting state, and q1 represents the state where the automaton
finds a b node as the second element. The accepting state q2 means that the
automaton finds a desired pair. When the automaton recognizes that the marked
pair is not an answer for the query, it goes to the junk state q3. When the
input tree is ill-marked, that is, when more than one node is selected for the
same component of the pair, the automaton also moves to q3. For simplicity
of explanation, we here introduce the junk state q3 to construct an automaton
that rejects all ill-marked trees. However, this is actually not necessary since the
query defined by an automaton is not affected by whether or not the automaton
accepts ill-marked trees, as we already stated.

A marking run on the above automaton consists of four functions m00, m01,
m10, and m11 of type {l, r}∗ × Q → 2({Pos(t)∪{⊥}})2 . We first calculate those
functions for the leaf nodes {l, rl, rr}. Since for p /∈ Pos(t) the set m00(p, q0)
is defined to be {(⊥,⊥)} and ms(p, q) = ∅ for any other s, q, we only need to
calculate the formula (1) with qL = q0 and qR = q0. Thus, for each leaf node e
we have:

m00(e, q) = {(⊥,⊥) | δ(q0, q0, (t(e), 00)) = q}
m01(e, q) = {(⊥, e) | δ(q0, q0, (t(e), 01)) = q}
m10(e, q) = {(e,⊥) | δ(q0, q0, (t(e), 10)) = q}
m11(e, q) = {(e, e) | δ(q0, q0, (t(e), 11)) = q}

The concrete values of ms(e, q) are shown in the following tables:

m00 q0 q1 q2 q3

l:a {(⊥,⊥)} ∅ ∅ ∅
rl:b {(⊥,⊥)} ∅ ∅ ∅
rr:b {(⊥,⊥)} ∅ ∅ ∅

m01 q0 q1 q2 q3

l:a ∅ ∅ ∅ {(⊥,l)}
rl:b ∅ {(⊥,rl)} ∅ ∅
rr:b ∅ {(⊥,rr)} ∅ ∅

m10 q0 q1 q2 q3

l:a ∅ ∅ ∅ {(l,⊥)}
rl:b ∅ ∅ ∅ {(rl,⊥)}
rr:b ∅ ∅ ∅ {(rr,⊥)}

m11 q0 q1 q2 q3

l:a ∅ ∅ ∅ {(l,l)}
rl:b ∅ ∅ ∅ {(rl,rl)}
rr:b ∅ ∅ ∅ {(rr,rr)}

For example, the entry m01(rr, q1) = {(⊥, rr)} means that if the first bit is not
marked for any nodes and the second bit of the node rr is marked, then the
automaton reaches state q1 at the node rr.

Next let us calculate m for the node r:b, which can be constructed from
m for rl:b and rr:b. We demonstrate the calculation of the two sets that are
actually required for obtaining the result of the query. The first set is m11(r, q2):

m11(r, q2) =
⋃
{ml(rl, qL) ∗mr(rr, qR) ∗ {sing(r, c)} |



δ(qL, qR, (b, c)) = q2, (l, r, c) = sub(11)}
Seeing the definition of the transition function δ, there are three choice for
qL, qR, and c to satisfy the condition δ(qL, qR, (b, c)) = q2. Namely, the case
{qL = q0, qR = q2, c = 00}, the case {qL = q2, qR = q0, c = 00}, and the case
{qL = q0, qR = q1, c = 10}. Only the last case is significant, since ml(rl, q2) and
mr(rr, q2) are empty for any l and r (see the tables). Thus, we have:

m11(r, q2)

=
⋃
{ml(rl, q0) ∗mr(rr, q1) ∗ {(r,⊥)} | (l, r, 10) = sub(11)}

= (m00(rl, q0) ∗m01(rr, q1) ∗ {(r,⊥)}) ∪
(m01(rl, q0) ∗m00(rr, q1) ∗ {(r,⊥)})

= ({(⊥,⊥)} ∗ {(⊥, rr)} ∗ {(r,⊥)}) ∪ (∅ ∗ {(⊥,⊥)} ∗ {(r,⊥)})
= {(r, rr)}

The second interesting set is m01(r, q1). We can calculate it in the same way.
This time, there is only one choice for qL, qR, and c:

m01(r, q1) = m00(rl, q0) ∗m00(rr, q0) ∗ {(⊥, r)}
= {(⊥, r)}

Finally, we show the calculation of m11(ε, q2), which is the result of the query.
Just like m11(r, q2), we have three choice for qL, qR, and c, of which two are
actually significant.

m11(ε, q2)

=
⋃
{ml(l, q0) ∗mr(r, q1) ∗ {(ε,⊥)} | (l, r, 10) = sub(11)}

∪
⋃
{ml(l, q0) ∗mr(r, q2) ∗ {(⊥,⊥)} | (l, r, 00) = sub(11)}

= (m00(l, q0) ∗m01(r, q1) ∗ {(ε,⊥)}) ∪ . . .

∪ (m00(l, q0) ∗m11(r, q2) ∗ {(⊥,⊥)}) ∪ . . .

= ({(⊥,⊥)} ∗ {(⊥, r)} ∗ {(ε,⊥)}) ∪ . . .

∪ ({(⊥,⊥)} ∗ {(r, rr)} ∗ {(⊥,⊥)}) ∪ . . .

= {(ε, r), (r, rr)}
The parts “. . . ” involve products with ∅ and therefore are omitted.

Complexity A direct bottom-up calculation of m takes O(|t|n+1) time, since we
need to calculate m1...1(v, q), which can grow up to O(|t|n) in the worst case, for
all |t| nodes.

This complexity can be improved if we reduce the set of selection marks to
be tested by pre-calculating the exact set of states relevant to accepting runs.
Flum, Frick, and Grohe [18] have shown an algorithm for evaluating an n-ary
MSO query locating n-tuples of sets of nodes that runs in O(|t| + |s|) time,



where |s| is the size of the output. They use a three-pass algorithm to achieve the
linearity. The first bottom-up pass calculates, for each node of the input tree, the
set of states where a bottom-up run of the automaton reaches for some selection
marks. The second top-down pass determines another set of states for each node,
namely, the states that may lead to an accepting state at the root node. Finally,
the last bottom-up pass collects the result of the query. The last pass is essentially
the same algorithm as we have shown in the preceding subsection, except that
it calculates m(v, q) only at the state that are determined to affects the query
result by the preceding two passes. Here, it is crucial to have efficient union
and product operations on the set data structures for ensuring the linear time
complexity. For this, they have exploited a linked list with an additional pointer
to the last element, which enables constant-time concatenation, for representing
sets with efficient operations.

Our Algorithm Our algorithm is based on this linear-time algorithm. How-
ever, since we only need to query n-tuples of nodes in MTran, as oppose to sets
of nodes in their case, we can specialize the algorithm so as to use a more con-
cise representation. Our approach is, instead of pre-calculating relevant states,
to directly execute the third collection phase in conjunction with our partially
lazy evaluation of set operations. In this, we basically delay set operations like
unions and products until actually enumerating the final result, except that
we eagerly compute those operations when one of the operands is an empty
set. This technique achieves the same time complexity as Flum-Frick-Grohe al-
gorithm. Roughly, delaying of the operations corresponds to the second pass,
which confines the calculation of concrete n-tuples to the runs that may reach
accepting states. Also, the eager computation for empty sets corresponds to the
first pass, which eliminates the calculation for the runs that never happen for
any selection marks. The advantage over Flum-Frick-Grohe is that partially lazy
set operations are extremely easy to implement, yet we only need to traverse the
input tree once (enumeration of the final results traverses the tree of lazy set
operations, whose size is proportional to the output size).

Partially Lazy Set Operations We first define lazy set operations required to
calculate marking runs. Here is our implementation of the set data type and op-
erations over it written in O’Caml [23]. Only two operations, union and product,
are necessary. The type of non-empty sets is:

type node_set_ne
= Singleton of (node option) list
| Union of node_set_ne * node_set_ne
| Product of node_set_ne * node_set_ne

The node option type is a type that can be either None (⊥) or Some x where
x can be any value of type node. Elements of the sets are length-n lists of
node options. Unions and products are represented as an operation tree that
symbolically represents a set. When it comes to the point where the actual



members of the set are required, the operation tree is evaluated to an explicit
form. The type of (possibly empty) sets of nodes is:

type node_set
= Empty | UnitSet | NonEmpty of node_set_ne

To deal with emptiness, empty and unit sets are strictly distinguished from
non-empty sets. Union and product operations are:

let union a b = match (a,b) with
| Empty,s | s,Empty -> s
| UnitSet,s | s,UnitSet -> UnitSet
| NonEmpty s1, NonEmpty s2 ->

NonEmpty (Union s1 s2)

let product a b = match (a,b) with
| Empty,s | s,Empty -> Empty
| UnitSet,s | s,UnitSet -> s
| NonEmpty s1, NonEmpty s2 ->

NonEmpty (Product s1 s2)

An empty set and a unit set are dealt as special cases. That is, when one of the
arguments is an empty set (a unit set, respectively), the set operation is explicitly
performed at that point. Note that each definition of union and product contains
one pattern matching and two applications of data constructors, therefore either
operation can be done in constant time.

We next show the function to convert an operation tree to the actual list of
elements that belong to the set represented by the operations tree.

(* returns: node option list *)
let prod_one a b =

match (a, b) with
| (None::al, b::bl) -> b :: prod_one al bl
| ( a::al, None::bl) -> a :: prod_one al bl
| _ -> raise "should not happen"

(* returns: node option list list *)
let prod sa sb acc =

fold_right (fun a acc ->
fold_right (fun b acc ->

(prod_one a b)::acc) sb acc) sa acc

The function prod calculates the asterisk product of two sets of tuples exactly
as in Definition 2, where prod one takes the product of two singleton sets. Each
function appends the result to the accumulator argument acc. Since we intro-
duced the types of tuples in the definition, we do not need to consider the case
that both a and b in prod one has a non-bottom head. The function to list
is the main routine for converting a symbolic operation tree to an actual set of
tuples.



(* node_set -> node list list *)
let to_list = function

| Empty -> []
| UnitSet -> raise "should not happen"
| NonEmpty s -> let rec f s acc = function

| Singleton vs -> vs::acc
| Union a b -> f a (f b acc)
| Product a b -> prod (f a []) (f b []) acc

in map (map (fun (Some e)->e)) (f s [])

Since this function is assumed to be applied to a tree representing the result set
of a more-than-zero-ary query, it does not consider the case of UnitSet, which
means that no node is selected. For a Singleton, we just create a singleton
list. For a Product, we use the prod function already defined. For a Union, we
simply concatenate the two lists. To see why this is correct, let us review the
Definition 2. Our query algorithm always takes the union of two sets in the form

⋃

l,r,c

ml(v.l, qL) ∗mr(v.r, qR) ∗ {(...)}

where ml(v.l, qL) consists of tuples whose all elements belong to the subtree
rooted at v.l, and mr(v.r, qR) consists of those in the subtree rooted at v.r.
This means that the ith element of a tuple in the set ml(v.l, qL) ∗mr(v.r, qR)
belongs to the subtree of v.l if and only if the ith bit of l is 1. Thus, if l 6= l′ or
r 6= r′, the set ml(v.l, qL)∗mr(v.r, qR) and the set ml′(v.l, qL)∗mr′(v.r, qR) are
always disjoint. This is why our simple method with concatenation is correct.

To see why eager computation of emptiness is required, let us see the case
of Product in the to_list function. If we do not distinguish empty sets during
the construction of operation trees, either a or b may be an operation tree
representing an empty set. If that happens, for example, a is evaluated to an
empty set, then the result of the computation (f b []) is just disposed by the
prod function, and does not affect the final query result. By the eager evaluation
of emptiness, we eliminate all such emergence of unnecessary computations. This
is essential for obtaining a linear-time complexity, as shown in the sequel.

Complexity Using these lazy set operations, we can calculate all operation trees
corresponding to ms including m1...1, by simply following Definition 2. As shown
in the definition, all ms for each node v can be constructed as the union of the
set of ml(. . . ) ∗mr(. . . ) ∗ {v, . . . , v}. Since there are |Q|2 choices for qL and qR,
and at most 3n choices for (l, r, c), using lazy set operations, we can construct
the operation trees corresponding to ms in O(3n|Q|2) steps. Thus, to calculate
marking runs for all nodes in the tree takes O(3n|Q|2t) time, which is linear to
the size of the input tree.

To show the total complexity of query evaluation is linear, we next show that
the evaluation of operation trees to obtain the list of elements in the denoted
set will take only linear time with respect to the size of the output list. The



following lemma assures that the to list function can be evaluated in linear
time to the size of the set denoted by the argument.

Lemma 1. Let |s| be the length of the resulting list of operation tree s. The inner
function f s acc in the definition of to list can be evaluated in O(3kn|s|) time
where n is the arity of the query, and k is the maximum number of Product nodes
in each path from the root to a leaf node of the operation tree s.

The number of Product nodes on each path is bounded by n in our algorithm,
since we only generate Product nodes between non-empty, non-unit sets—such
products strictly decrease the number of ⊥ in each tuple, and the tuples we
consider here are always n-tuples. Therefore we can derive O(3nn|s|) time from
this lemma. The whole query computation ends in O(3n(|Q|2t + n|s|)) time.
When the query formula is fixed, the values 3n, |Q|2, and n are constant factors,
and thus we obtain the complexity O(t+ |s|). The proof of Lemma 1 can be done
by simple induction on the structure of the arguments of type node set ne:

Proof. The Singleton case is trivial. For the Union case, by induction hypoth-
esis, (f b acc) is evaluated in O(3kn|b|) time and then (f a ...) is evalu-
ated in O(3kn|a|) time. So totally O(3kn|a| + 3kn|b|) = O(3kn|s|) time is con-
sumed. For the Product case, by induction hypothesis, (f a []) is evaluated in
O(3k−1n|a|) time and then (f b []) is evaluated in O(3k−1n|b|) time. Since the
prod operation is O(n|a||b|), total complexity is O(3k−1n|a|+3k−1n|b|+n|a||b|) <
O(3kn|a||b|) = O(3kn|s|)

Example Running our algorithm on the previous example in Section 4.2, we
obtain m11(ε, q2) as the following operation tree

NonEmpty(
Union(
Product( Singleton [⊥;r], Singleton [ε;⊥] ),
Product( Singleton [⊥;rr], Singleton [r;⊥] )

))

instead of a concrete set {(ε, r), (r, rr)}. By evaluating this tree, we get the
desired result: [[r; rr]; [ε; r]].

Two features of the algorithm has eliminated unnecessary calculation. The
first point is its laziness. By delaying the actual construction of the sets, we have
avoided the computation for the sets like m10(l, q3) or m01(r, q3) that are not
contained in the query result. The second point is its eager evaluation for empty
sets. By this we have avoided the computation for the sets like m01(rl, q1) or
m00(rr, q1) that are taken products with an empty set.

4.3 Transformation Template Evaluation

How we can evaluate gather or visit expressions themselves is clear from the
definition of their semantics. The issue is how to integrate the query algorithm



introduced in Section 4.2 to the evaluation strategy for whole transformation
templates. A naive implementation of the semantics in Section 3.3 will evaluate
each query as a unary query, by fixing the binding of the free variables other
than the one to be queried. However, as we already discussed in Section 1.3, we
do not take this strategy. Instead, we evaluate each query expression as an n-ary
query (where n is the number of its free variables) once and for all. We have
further developed a novel optimization technique for n-ary queries exploiting the
context information (i.e., the sets of nodes bound in outer templates). Consider
the following case:

{gather x :: φ(x) :: {gather y :: ψ(x,y) :: ...}}
We evaluate only once the expression ψ(x, y) as a binary query as stated in
Section 4.3, and obtain a list [(vx1, v

y
1) . . . (vxs, v

y
s)] of 2-tuples satisfying the ex-

pression. This list is referred to by a table to obtain the list of all ys for each
x bound by the outer template. In this way, each query is evaluated only once
per one input document. Thus, the total time consumed specifically for querying
will be the sum of the times spent by all queries each evaluated once.

This strategy, however, still has some waste. Obviously, we only need the
lists of (vxi , v

y
i ) such that the node vxi satisfies the query expression φ(x). Not all

results of ψ(x, y) are necessary. This could be a problem, since as we proved in
the preceding subsection, each query takes O(3n(|Q|2t+n|s|)) time that depends
on the size of query result s.

One way to handle this problem is to rewrite the query expression as follows:

{gather x :: φ(x) ::
{gather y :: φ(x) & ψ(x,y) :: ...}}

Pushing outer query expressions into inner queries and concatenating them con-
junctively. This rewriting keeps the result of transformation unchanged, and
reduces the size of the result from inner binary query. Only the pairs (vxi , v

y
i )

satisfying φ(vxi ) are obtained. Although this rewriting solution indeed reduces
the size of s, it causes another complexity problem. Due to the complication of
the query formula from ψ(x,y) to φ(x) & ψ(x,y), the size |Q| of the compiled
automaton may increase. The parameter |Q| affects the total time complexity in
a quadratic order and therefore cannot be ignored.

We have developed a slightly modified version of n-ary query algorithm to
remedy this problem. In this, we user the results of outer queries during the
evaluation of the inner query. Using this, we can reduce the query result like the
rewriting approach while keeping the size of the automaton unchanged. Con-
cretely, we first execute the outermost unary query φ(x) in the same way as
explained in the previous subsection, and obtain a list of results Rx = [ux

1 . . . ux
k].

We then execute the next inner query ψ(x,y) with one modification to the defi-
nition of a marking run:

ms(v, q) =
⋃ {

ml(v.l, qL) ∗mr(v.r, qR) ∗ {sing(v, c)}
∣∣

qL, qR ∈ Q, l, r, c ∈ Bn,



δ(qL, qR, (t(v), c)) = q,

(l, r, c) ∈ sub(s),

c1 = 1 =⇒ v ∈ Rx

}

assuming that the first bit corresponds to the variable x (If there are further
inner queries, we repeat the above recursively.) In this modified definition, we
select each node v as a marked node for variable x only when v is contained in
Rx. Therefore, the final result obtained in this way only contains tuples (vxi , v

y
i )

such that vxi ∈ Rx. Checking the extra condition (the underlined part) does not
incur any additional time complexity blowup, since by processing outer queries
earlier than inner ones, we can always have each Rx already constructed and
its inclusion can be determined in constant time using any appropriate data
structure such as a hash-table.

Complexity Using the fact that each MSO query can be evaluated in linear time,
we have proved the following theorem, assuring that the evaluation of a fixed
MTran transformation template terminates in polynomial time with respect to
the size of the input.

Theorem 1. An MTran program is evaluated in O(d|t|d + |s|) time, where d is
the nesting-depth of the program, and |t| and |s| is the size of the input and the
output, respectively.

In order to achieve this complexity order, we internally represent the output tree
as a DAG (directed acyclic graph). Since a sub-template evaluated under the
same variable binding always returns the same output tree, our representation
shares such output trees to avoid redundant calculation. The proof of the theorem
is done by induction on the structure of transformation templates, showing both
the evaluation time according to the semantics and the size of the output DAG
of each subtemplate fit in the complexity order. The details are omitted.

5 Preliminary Performance Evaluation

We show results from our experiments using four examples from Section 2. All
benchmarks are run on Windows XP SP2 on a 1.6GHz AMD Turion processor
with 1GB RAM, using MONA 1.4 as a backend compiler of MSO formulae. We
have implemented our system in C++ and compiled it by GNU C++ Compiler.
We have measured the execution time using the time command, and have taken
the average of 10 runs.

We separately experiment on two steps of our implementation strategy, whose
result is shown in Table 2. The second column shows the total time spent for
compiling all query expressions in each program. Although this step takes hyper-
exponential time in the worst case, the experiment shows that, at least for these
examples of XML queries, our strategy yields enough performance. We have then
measured the performance of our evaluation algorithm using randomly generated



Compile 10KB 100KB 1MB

TableOfContents 0.970 0.038 0.320 3.798

MathML 0.703 0.236 1.574 16.512

Linguistic 0.655 0.063 0.429 4.050

RelaxNG 0.553 0.068 0.540 5.684

Table 2. Compilation and Execution Time (sec)
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Fig. 7. Evaluation Time

XML documents of different sizes as inputs. The results confirm that most trans-
formations are executed in reasonably practical time even for relatively large in-
puts. However, the MathML example spends longer time compared to the other
examples. The reason seems the following. Recall that our query algorithm runs
in O(|t| + |s|) time, where |s| is the size of the query result. The MathML pro-
gram selects every node in the input for a whole document transformation, which
makes |s| quite large.

To demonstrate the efficiency of our template evaluation strategy (Section 4.3),
we compare the performances of MTran and traditional XSLT processors (XT
[24] and Xalan-C [25]). For benchmark, we wrote, both in MTran and XSLT, a
transformation that appends, to the content of each h2 element, the content of its
preceding h1 element. Figure 7 shows the execution times for the inputs varying
the number of h2 elements from 1000 to 9000. As we explained in Section 4.3,
MTran processes the query to select “the h1 element preceding the current h2
element” as a binary query, which enables a linear time transformation. On the
other hand, XT and Xalan-C evaluate the above query as a unary query and
repeat it on each h2 node, which incur quadratic blow-up as can be seen in the
figure.
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