The Complexity of Tree Transducer Output Languages

Kazuhiro Inab& and Sebastian Maneth

1 The University of Tokyokinaba@is.s.u-tokyo.ac.jp
2 National ICT Australiasebastian.maneth@nicta.com.au
3 University of New South Wales, Sydney

Abstract. Two complexity results are shown for the output languages generated by compositions of macro
tree transducers. They are in NSPA@IEand hence are context-sensitive, and the class is NP-complete.

1 Introduction

Macro tree transducers (mtts) [12, 14] are a finite-state machine model of tree-to-tree translations. They
are motivated by syntax-directed semantics of programming languages and recently have been applied to
XML transformations and query languages [18, 21]. Mtts are a combination of top-down tree transduc-
ers [22, 24] and macro grammars [13]. They process the input tree top-down while accumulating several
output trees using their context parameters. Sequential composition of mtts gives rise to a powerful hi-
erarchy (the “mtt-hierarchy”) of tree translations which contains most known classes of tree translations
such as those realized by attribute grammars, by MSO-definable tree translations [5], or by pebble tree
transducers [20]. Consider the range, or output language, of a tree translation; it is a set of trees. If we
apply “yield” to these trees, i.e., concatenate their leaf symbols from left to right, we obtain a string lan-
guage. The string languages obtained in this way from the mtt-hierarchy form a large class (containing
for instance the 10- and Ol-hierarchies [6]) with good properties, such as being a full AFL and having
decidable membership, emptiness, and finiteness [7].

In this paper we study the complexity of the output (string or tree) languages of the mtt-hierarchy.
Note that we do not explicitly distinguish between string or tree output languages here, because the
translation “yield” which turns a tree into its frontier string (seen as a monadic tree) is a particular sim-
ple macro tree translation itself and hence the corresponding classes have the same complexity. Small
subclasses of our class of languages considered here are the |O-macro languages (or, equivalently, the
yields of context-free-tree languages under |O-derivation) and the string languages generated by attribute
grammars. Both of these classes are LOG(CFL)-complete by [2] and [10], respectively. Another subclass
of our class is that of Ol-macro languages, which are equivalent to the indexed languages [1], by [13].
This class is known to be NP-complete [23]. Hence, our class is NP-hard too (even already at level
2). Our first main result is that output languages of the mtt-hierarchy are NP-complete; thus, the com-
plexity remains in NP when going from indexed languages to the full mtt-hierarchy. In terms of space
complexity, languages generated by compositions of top-down tree transducers (mtts without context
parameters) are known to be in DSPA@IE[3]. This result was generalized in [17] to compositions of
total deterministiantts. Our second main result is that output languages of the mtt-hierarchy (generated
by compositions ohondeterministientts) with regular tree languages as inputs are in NSRACENd
thus are context-sensitive. The approach of our proof can be seen as a generalization of the proofs in [3]
and [17]; moreover, we make essential use of the idea of compressed representation of backtracking
information, used by Aho in [1] for showing that the indexed languages are in NSERACE

We first solve the “translation membership” problem for a single¥htfThat is, we show that, given
treess andt, we can determine whether or not the pairt) is in M'’s translation, in linear space and
polynomial time with respect tfs| + |¢| on a nondeterministic Turing Machinés| denotes the size
of the trees). The challenge here is the space complexity; we use a compressed representéfisn of
output trees for inpus, inspired by [19], and then checkifis contained using a recursive procedure

in which nodes needed for backtracking are compressed using a trie, similar to Aho’s compression of
index strings in [1]. Then, we generalize these results from one mtt to compositions of mtts. Here, the
challenge is the existence of intermediate trees. Consider the compasiifdwo translations realized
by mtts:7; followed by . To check(s,t) € 7, we nondeterministically guess an intermediate tree
and check whethefs,u) € 7 and(u,t) € 7. From the complexity result of single mtts, we know
that this can be done i@(|s| + |u| + [t|) space. This can, however, be much larger @afs| + |t|);
the sizeju| of the intermediate tree can actually be double-exponentially larger thanand|t|. The
basic idea to prove the linear size complexity for compositions of mtts is to bound the sizes of all such
intermediate input trees. This is achieved by putting the mtts in certain normal forms such that they do
not delete much of their input, in the sense that every output thas a corresponding input tree of size
only linearly larger thart|. In fact, also the initial input tree can be changed into a smaller tréeof
size linear in|t|, for which 7(s’) = 7(s). Limiting the size of intermediate trees can also be used for
showing the time complexity NP. We nondeterministically guess all linear size intermediate trees, and
test the translation membership of each single mtt in polynomial time.

Although the idea of bounding the size of intermediate trees is quite similar to [3] and [17], the
existence of context parameters and nondeterminism together adds some difficulty in every step of the
proof. For example, consider the nitfy.,, with the following three rules, 1, andrs:

(90,2(z)) — (g, 2)({q,z)(e)) (ro) (,e)(y) — +((y,v),c(y,y) (r2)
(g,a(x))(y) —

Here, + denotes a nondeterministic choice; e.g., when the gtamads an input node labeleg it
generates an output node labeled either c. This mtt takes a tree of form(a(---a(e)---)) as input
(with n occurrences of) and generates a full binary tree of height(note that, without parameters, the
height growth can only be linear) with each non-leaf node arbitrarily labeled eitber. Therefore,
the size of the set of possible output treeg?s . To decide whethefs, t) € 7, for given treess
andt, we essentially have to find the correct choice among the triple exponentially many candidates. To
address the issue, we (1) instead of solving the membership problem for all mtts, only deal with mtts in
the above mentioned non-deleting normal form, and which are linear with respect to the input variables,
and (2) exploit the compressed representation of outputs of mtts [19] for manipulating the output set.
Note that due to nondeterminism we cannot anymore obtain some of the useful normal forms (non-
erasing, which is similar to having removes in a string transducer, and non-parameter-deleting) used
in [17] for total deterministic mtts. We address this issue by introducing a slight extension of mitts,
namely, mtts with choice and failutewhich re-enable us to have the non-erasing normal form, and
compensate the absence of the non-parameter-deleting normal form.

2 Preliminaries

We denote by the empty listi.e., a list of length 0, and bjj./> the concatenation of two lisis and
lo. A list [is said to be arefix of a list!’ if there is a list!” such that.l” = I, and to be groper
prefixif I # e. For a finite set4, we denote by A| the number of its elements. A finite sBtwith a
mappingrank : & — N is called aranked alphabetWe often writeo(¥) to indicate thatank(c) = k
and writeX(¥) to denote the subset &f of rank+ symbols. Theproductof X and a seB is the ranked
alphabet” x B = {(5,b)*®) | s¥) € ¥ b € B}. Throughout the paper, we fix the sets of input variables
X ={x1,x9,...} and parameters = {y1,y2, ... } which are all of rank 0, and the set of choice nodes
C = {6, +3}. We assume any other alphabet to be disjoint withy", andC. The setX; is defined
as{z1,...,z;}, andY; is defined similarly. k

The setT’y, of treest over a ranked alphabef is defined by the BNR ::=o(t,...,t) for o €
X *) Instead ofo () we usually writeo. We recursively define the functidabels, from T’s; x N* to

2

Y as follows. Fort = o(t1,...,t;), o™ € ¥, k > 0, andty,...,t; € Ty, labels(t,¢) = o and
labely(¢,i.v) = labely(t;,v). Thus, the empty list denotes the root node andi denotes the-th
child of v. We omit the subscript; if clear from the context. We define the qmigt) = {v € N* |
label(t,v) is defined. Forp € pogt), t|, denotes the subtree ofrooted at the node. We write |¢|
as a shorthand fgpogt)|. A subsetl. C T’ is called atree languageBy REGT, we denote the class
of regular tree languagegL5]. Let >” and A be ranked alphabets. A relatienC Ts; x T is called a
tree translation(over X’ and A) or simply a translation. For two translationsand, their sequential
compositionr ; 7 (“7; followed by 72") is the translation{(z, z) | Jy((z,y) € 71, (y,2) € 12)}. For
two classed’; andT: of translations, we defin@, ;7o = {r1;72 | 11 € T1,72 € Ts}. The k-fold
composition of the clas¥ of translations is denoted W*. For a tree languagg and a translation,
(L) = |J{r(t) | t € L}.For a clasg" of languages and a clagsof translations, we denote Wy(F')
the class of output languagés(L) | T € T, L € F'}.

A macro tree transducer (mtt)/ is a tuple(Q, X, A, qo, R), where(@ is the ranked alphabet of
states > and A are theinput andoutputalphabetsg, € Q¥ is theinitial state, andR is the finite set
of rulesof the form(q, o (1, ..., 2%)) (Y1, - - -, Ym) — 7 Whereq € Q™), o € X, andr is a tree in
TAuQxx,)y, - Rules of such form are calleg, o)-rules, and the set of right-hand sides of(gllo)-
rules is denoted by, ,. We always assum&(®) and A (and thusTs; andT,) are non-empty. The
rules of M are used as term rewriting rules in the usual way. We denote- pythe derivation relation
of M onTgx7,)ua, @and byulys the sef{t € Ta | u =73, t}. Note that “state-calls{q, z;) can be
nested and therefore different orders of evaluation yield different trees. Unless otherwise specified, we
assume theutside-in(Ol) derivation in which we always rewrite the outermost (= top-most) state calls.
By Corollary 3.13 of [12], this order of evaluation yields the same set of output trees asréstricted
order, i.e., the case where no restriction is imposed on the order of evaluatiotraitlation realized
by M is the relationry; = {(s,t) € Ts x Ta | t € {(qo,s)lar}. We omit the subscript; if it is clear
from the context. We denote by MT the class of translations realized by mtts. An mttis called a top-down
tree transducer (tt) if all its states are of rank 0O; the corresponding class of translations is denoted by T.
We call an mtideterministiq(total, respectively) if for everyq, o) € Q x X, the numbetR, | of rules
is at most (at least) one; the corresponding classes of translations are denoted by plefaDn{t is
linear (denoted by prefix L) if in every right-hand side of its rules each input variabke X occurs at
most once. The same notation is used for tts; for instanck denotes the class of translations realized
by total deterministic tts.

Macro Tree Transducers with Choice and Failure For a technical reason, we define a slight
extension of mtts. Amtt with choice and failure (mttcf}/ is a tuple(Q, X, A, qo, R) defined as
for normal mtts, except that the right-hand sides of rules are treds,ing x,)uy,,uc (recall that
C = {6, +(2)}). The derivation relations=£; and| 5;) and the realized translatiom¢) are defined
similarly as for mtts, with two additional rewrite rules:(t1,t2) = s t1 and+(t1, ta) = s to. Thus,+
denotes nondeterministic choice ghdenotes failure (because there is no rule for it). Again, we assume
the outside-in evaluation order. For a right-hand sidegf an mttcf, we say a position € pogr) is
top-levelif for all proper prefixes/ of v, label(r, /) € AUC. We say an mttcf isanonicalif for every
right-hand side- and for every top-level position € poqr), label(r,v) ¢ C.

The idea of the choice and failure nodes comes from [12]; there they show that DkMT ; SET,
where SET is the class of translatiossty : Thuc — Ta with seta(6) = 0, seta(+(c1,c2)) =
sefc;) U sefce), andseta(d(cy,...,ck)) = {0(t1,...,tk) | ti € seta(c;)} for & € A. Let us
briefly summarize the proof. For any mttcf (or mitJ, we can always construct a total determinis-
tic mttcf M’ that realizes the same translation, by taking tfer)-rule of M’ as{(q,o(---))(---) —
+(r1,+(re, ..., +(rn,0)---)) where{r,...,r,} = Rq.. Also note that the mttclM’ = (Q, X, A,
qo, R") can be regarded as the nmit” = (Q, X, A U C, qo, R'), by merely interpreting thé and +
nodes as output symbols. Each output)df is a “choice tree” denoting the set of possible output

3

trees. Obviously, the translati@mety carries out this interpretation of choice trees, and thus we have
M = Ty Seta.

The reason why we introduce mttcfs is twofold. One reason is the decomposition result explained
above, through which we give the complexity bound of a single mtt translation in Section 3. The other
reason is its more flexible use of nondeterminism and partiality. Suppose an mttef,mie;))(y1) —

{p, z1)(+(d1, d2)). This could produce more output than an mtt with the pair of rides (z1)) (y1) —
(p,x1)(61) and (g, o(x1))(y1) — (p,z1)(d2), because the statemay copy its parameter. Although in

fact we can still emulate- andé by introducing auxiliary states, it seems much simpler to-usadé.

For example, mttcfs have simple normal forms, such as non-erasure (Section 4.1), while the emulating
mtts do not have such a normal form.

3 Complexity of a Single MTT

In this section we show that for any canonical mtddf having properties calledath-linearandnon-
erasing there is a nondeterministic Turing Machine that decides whether a givefspaiof trees is in
v in O(|s| + |t]) space and in polynomial time with respect #0+ |¢|. Thus, this “translation mem-
bership” problem is in NSPACE) and NP. Two previous works on the same membership problem for
restricted classes of macro tree transducers — for total deterministic mtts [17] and for nondeterminis-
tic mtts without parameters (top-down tree transducers) [3] — both give DSRACGHgorithms. First
let us briefly explain where the difficulty arises in our case, i.e., with nondeterminism and parameters.
For total deterministic mtts, the DSPACE complexity is proved via a reduction to the case of lin-
ear total deterministic mtts, and then to attribute grammars (which are deterministic by default), whose
output languages are LOG(CFL)-complete and therefore have DS@4¢IE)?) membership test [10].
For nondeterministic tts, the complexity is achieved by a straightforward backtracking-based algorithm;
given the input tree and the output treg it generates each possible outputsdfy simulating the re-
cursive execution of state calls, while comparing witfihe following two facts imply the DSPAGE)
complexity: (1) the depth of the recursion is at most the height ahd (2) to backtrack we only need to
remember for each state call the rule that was applied (which requires constant space). Note that neither
(1) nor (2) hold for mtts; the recursion depth can be exponential and the actual parameters passed to each
state call must also be remembered for backtracking.

Here we concentrate on a restricted class of mttcfs, namwegnica) non-erasingandpath-linear
mttcfs, which is exactly the class of mttcfs needed later in Section 4, to obtain the complexity result for
the output languages of the mtt-hierarchy. For a canonical mtt, we define a right-hand side of a rule to
be non-erasingf it is notin Y. A canonical mttcf isnon-erasingf the right-hand sides of all its rules
are non-erasing. An mttcf jgath-linearif a subtree of the forniq, z;)(- - - (p, z;)(---)---) inits rules
impliesi # j.

Making MTTCFs Total Deterministic Let M be a canonical, non-erasing, and path-linear mttcf.
It is easy to see that As noted in Section 2, we can always construct a total deterministidhttcf
equivalent taV/ by simply taking(¢q, o (- -+))(---) — +(r1,- -+ , +(r0,0) ---) for {r1,...,r} = Ry 0.
Then, M’ = (Q, X, A, qo, R') can be seen as a total deterministit N = (Q, X', AUC, qo, R') whose
outputs are the choice trees denoting sets of output tregs. athe canonicity and the non-erasure of
M implies that in any right-hand sidec R’ and every position € pogr) with label(v) € Y, there
exists a proper prefix’ of v with label(v") # +. Path-linearity is preserved frod to M.

Compressed Representation Our approach is to represent the output choicetkg@) in a com-
pact (linear size) structure, and then compare it to the given output {@een a total deterministic mtt
N and an input tree € T, we can, in time)(|s|), calculate a straight-line context-free tree grammar
(or SLG, a context-free tree grammar that has no recursion and generates exactly one output) of size
O(|s|) that generatesy (s), using the idea of [19]. Rather than repeating the full construction of [19],
we here give a direct representation of the nodes\@k).

4

Let V be a total, deterministic, non-erasing, and path-linear mtt with output alpkbbe” and
let s be an input tree. LeE' = {(r,v) | ¢ € Q,0 € X,r € Ry,,v € pogr)}. For a liste =
(ro,) - .. (rn, vy) Of elements oy, we defineorig(e) (theorigin of €) ase.ig . . . ix—1 Wherek is the
smallest index satisfyinigbel(r, v;) ¢ Q x X (or, letk = n+1 when all labels are i) x X) andi; is
the number such théd, z;) = label(r;, v;) for someg. We calle well-formedif label(r;, v;) € Q@ x X
for everyi < n, label(r,,v,) € AU C, andorig(e) € pogs). Intuitively, e is a partial derivation or
a “call stack” of the mttV. Each node ofy(s) can be represented by a well-formed list, which can
be stored inD(|s|) space because its length is at mbst (height ofs) and the size of each element
depends only on the size of the fixed mtt, not|ejp Note thate can represent many nodesig (s) if
the mtt is non-linear in the parameters. For instanceMgt,, from the Introduction and the input tree
s3 = a(a(a(e))), the list(rg, €.1)(r1,e.1)(r1,e.1)(r2, €.1) represents ab-nodes at depth 16 of the tree
TMaerp (53), Of Which there ar@® many. The labet-label(e) of the node represented bys label(r;,, vy).
The operatiorc-child(e,) which calculates the representation of tkié child of the node represented
by e is defined in terms of the following three operations. For a well-formed kst(rg, vp) . .. (70, Vn)
with rank(c-labelle)) = m, we definedown(e) for 1 < i < m as(ro,vp)...(Tn,Vn.i). FOre =
(ro,vp) - .. (rn, vy) such thatabel(r,, v,) = y; € Y, we definepop(e) = (ro,10) ... (rn—1, Vn—1.7).
For a liste = (rg,) ... (rn, vn) Wherelabel(r,,v,) = (¢,z;) € Q@ x X, we defineexpande) =
(ro,0) -« . (rn, vn)(rnt1, €) Wherer, 1 is the right-hand side of the uniqye, label(s, orig(e)))-rule.
Then, the operatioe-child(e, i) is realized by the following algorithm: first appljown to e, then
repeatedly applpopas long as possible, and then repeatedly apppandas long as possible. The non-
erasure ofV ensures that this yields a well-formed list; in the last step, whgrandcannot be applied
toe =...(rn,vy), label(r,,v,) is obviously not inQ x X and by non-erasure is not In, hence it is
in AU C. Since the length of a well-formed list is bounded |syand pop (and expand respectively)
always decreases (increases) the length of the list by one, each of them are executed sittimest
in the calculation ot-child. Hence,c-child runs in polynomial time with respect te|. Similarly, the
representation of the root ofy(s) is obtained in polynomial time by repeatedly applyiexpandas
long as possible tey = (o, €) wherer, denotes the right-hand side of the uniqye, label(s, €))-rule.
Note that a similar list representation is used in the proof of Theorem 3 in [4].

Matching Algorithm with NP Time Complexity
Lett € Ta. Figure 1 shows the nondeterministic algo-
rithm MATCH that decides, given a well-formed list

MATCH (e,

1: while |(§bqéf(e) — 4+ do and a node of ¢, whether the set of trees represented by
2 e — c-child(e, k) wherek = 1 or 2, the choice tree at contains the subtree ofrooted atv.

3 if clabele) ,abgl‘(’:)dfﬁggm'”'snca"y chosen The operations-label andc-child are defined as above.
4: retm false The operationdabel, rank, andchild are basic tree op-

gf e'ser;ft[f;ﬂkﬂﬁge'(”)) = Othen erations, assumed to run in polynomial time with respect
7 else to |¢|. If we apply MATCH to the representations of the
8 for i = 1torank(label(v))do root nodes ofry(s) andv = ¢, we can decide whether

9 if not MATCH (c-child(e, ¢), child(v, 1)) then
10: return false (s,t) € Tar. Since this is the standard top-down recursive
1L return true comparison of two trees, the correctness of the algorithm

should be clear.
Fig. 1. Matching Algorithm In each nondeterministic computation, MATCH is

called once for each node of In each call, the while-

loop iterates at most|s| times for a constant. This is
due to non-erasure, i.e., for eve¥ynode in right-hand sides there exists a nprancestor node. If
we onceexpanda list for obtainingc-child, we never se& -nodes in right-hand sides (thus nepemp)
before seeing soméa-node. Thus, during the while-loop, the sequence of applied operations must be:
first pops anddowris are applied, and theexpandis applied (if any), and after that mmopis applied,
i.e., the only operations applied aegpandor down In other words, it has to be in the regular set

5

(popdown)* (expanddown)*. However, since the length of a well-formed list is at megtwe can con-
tinuouslypopwithout expandng at mosts| times, and the same fexpandwithout popping. Also, the
numbers of continuougowris are bounded by the height of the right-hand sides of the rul@s dthus,
the loop terminates after at mast (1 + the maximum height of right-hand sides®f) - |s| iterations.
Altogether, the total running time is polynomial fis| + |¢].

Linear Space Complexity The MATCH algorithm take® ((|s| + log |¢|)|¢|) space if naively im-
plemented, because in the worst case the depth of recurgigfi¢i$ and we have to remembe(which
costsO(|s|) space) and (O(log(]t|)) space at least, depending on the tree node representation) in each
step of the recursion. However, note that the lists of nodes share common prefixes! Suppose the root
node is represented Wyo, vo) (71, 1) (2, v2)(r3, v3) and its child node is obtained by applyidgwn;,
pop, andexpand Then the child node is of the foritrg, 1) (r1, v1)(r2, v5) (75, v4), which shares the
first two elements with the root node representation. We show that if we store lists of nodes with com-
mon prefixes maximally shared, then, in the case of path-linear mtts, their space consumption becomes
O(|s|+1t|). The idea of sharing lists resembles the proof of context-sensitivity of indexed languages [1].

We encode a list of well-formed lists as a tree, written in parenthesized notation on the tape. For
example, the list of three lis{®1 p2p3, p1p2p4, p1p5p6] IS encoded ap; (p2(ps, pa), ps(ps)). Since the
number of parentheses s 2n and that of commas is. n wheren denotes the number of nodes,
the size of this representation @(n). When the function MATCH is recursively called, we add the
currente to the end of the list. The addition is represented as an addition to the rightmost path. As
an example, let = p1p5p7ps. The common prefix; ps with the current rightmost path; psp¢ is
shared, and the suffip;ps is added as the rightmost child of tlwg-node. Then, we have a new tree
p1(p2(ps3, pa), ps(pe, p7(ps))). Removal of the last list, which happens when MATCH returns, is the
reverse operation of addition; the rightmost leaf and its ancestors that have only one descendant leaf
are removed. Note that, since by definition a well-formed list cannot be a prefix of any other well-
formed lists, each well-formed list always corresponds to a leaf node of the tree. It is straightforward to
implement these two operations in linear space and in polynomial time.

Let us consider what happens if we apply this encoding to the outputpafttalinear mtt. In
the algorithm MATCH we only proceed downwards in the trees, i.e., the pararieterthe recur-
sive calls is always obtained by applyimgchild several times to the previous parameterThus,
the lists[eg, e1,...,e,] Of node representations we have to store during the recursive computation
always satisfy the relation; € c-child™(e;) for everyi < j. Lete = (ro,10)...(rm,vm) and
e = (ry, 1) ... (r,,v,) be proper prefixes of different elements in the same list satisfying the con-
dition (here we assume thatis taken from the element preceding the one whéns taken). Then,
orig(e) = orig(e’) only if e = ¢’. This can be proved by contradiction. Supposig/(e¢) = orig(e’)
ande # ¢/, and thej-th elements are the first difference betweesnde’. Recall thate’ is a prefix of
a well-formed list obtained by repeatedly applyieghild to another well-formed list, of which is a
prefix. Then it must be the case that= r; (by definition ofexpand r; andrg. are uniquely determined
from (ro, vo) ... (rj—1,vj-1) and(rg, vp) . .. (r_1, vi_4), which are equal) and is a proper prefix of
z/;.. However, due to path-linearity, the input variable/jaiandyg. must be different, which contradicts
orig(e) = orig(e’). Therefore, we can associate a unique nodeois) with each proper prefix of the
lists, which means that the number of distinct proper prefixes is at ploSimilarly, it can be shown
that adding only to the rightmost path is sufficient for maximally sharing all common prefixes. Suppose
not, then there must be in the list three nodes of the farms= e.(r,v).€}, ea = e.(r,1/).€), and
es = e.(r,v).e5 with v # 1/ in this order. Note that if this happened, then the prefix, ») would not
be shared by the rightmost addition. Howevegrg c-child* (e1) implies thatv is a proper prefix of/,
and byes € c-child*(ez), v/ is a proper prefix o, which is a contradiction. Hence, the number of
nodes except leaves in the tree encoding equals the number of distinct proper prefixes, which is at most
|s|. We can bound the number of leaves|by the maximum depth of the recursion. So, the size of the
tree encoding of a list of nodes @(|s| + |t|). We can easily remember the whole list«$ in O(]¢|)

6

space. Since in the lissy, ..., v,], v;11 is always a child node of;, we only need to remember the
child number for each node. For example, theflist.2, €.2.1] can be encoded &s 2, 1]. Thus, we only
need< heigh{t) many numbers, each of which is between 1 and the maximal rank of symbdls in
which is a constant.

Theorem 1. Let M be a canonical, non-erasing, and path-linear mttcf. There effectively exists a non-
deterministic Turing Machine which, given asyndt as input, determines whether or n@t ¢) € s
in O(|s| + |t|) space and in polynomial time with respect o+ |¢|.

4 Bounding the Size of Intermediate Trees

As explained in the Introduction, the key idea for obtaining linear-size complexity for compositions of
mtts is to bound the size of all intermediate input trees, and this is achieved by putting the mtts into
“non-deleting” forms. In the same way as for total deterministic mtts [17], we classify the “deletion” in
mtts into three categorieserasing input-deletionandskipping(a similar classification without erasing,

which is a specific use of parameters, is also used in the case of nondeterministic tts [3]). The resolution
of each kind of deletion, however, requires several new techniques and considerations compared to
previous work, due to the interaction of nondeterminism and parameters. In the rest of this paper, we
first explain how we eliminate each kind of deletion, and then show the main results.

4.1 Erasing

We first consider “erasing” rules — rules of the fokmo(---))(y1,-..,ym) — vi, as defined in Sec-

tion 3. An application of such a rule consumes one inputode without producing any new output
symbols; hence it is deleting a part of the input. Note that if the rank isf non-zero, then a rule as
above is at the same time also input-deleting, which is handled in Section 4.2. In the case of total deter-
ministic mtts, “non-erasing” is a normal form, i.e., for every total deterministic mtt there is an equivalent
one without erasing rules. Unfortunately, we could not find such a normal form for nondeterministic mtts
with Ol semantics. Note that for Ol context-free tree grammars (essentially mtts without input: think of
(g, x;) as a nonterminalN,, or equivalently, think of macro grammars [13] or indexed grammars [1],
with trees instead of strings in right-hand sides), it has been shown [16] that thesenan-erasing
normal form: erasing grammars are strictly more powerful than non-erasing ones. To see where the
difficulty arises, let us consider the following example of a deterministic mtt and the inpui(tsee):

(q1,a(w1,22)) — (g2,71)({g3,72)(B,C)) (q2,b)(y1) — A(y1,v1) (g3, 0)(y1,92) — w1

The (g3, b)-rule is erasing. The basic idea of obtaining the non-erasing normal form for total deter-
ministic mtts is to apply all erasing rules inline where they are called in a right-hand side. That is, we
remove the erasing rule and modify therule to(qy, a(z1, z2)) — (g2, z1)(B) (plus a look-ahead check

“x9 = b"). This approach does not work properly under Ol-nondeterminism. Let us suppose the case
when the(gs, b)-rules are nondeterministic as follows:

(g3:0)(y1,92) = v1 (@3,0)(y1,92) —y2 (g3,0)(y1,92) — A(y1,92)-

Note that they, rule duplicates its argumerys, z2) (B, C) beforecalling ¢3, and evaluates the two copies
independently. Thugg;, a(b, b)) | contains all the nine treést;, t5) with ¢1, t2 € {B,C, A(B,C)}. How-

ever, the inline application of erasing rules now giv@s; a(z1,z2)) — (g2, 21)(B), (¢1,a(x1, 22)) —

(g2, 21)(C), and{q1, a(z1,x2)) — (g2, z1)(A(B,C)), which implies copyingafter evaluation of they;

call. So, in order to perform the expansion correctly, we need some way to preserve the nondeterministic
choice after the expansion. For this purpose, we move from normal mttgavith choice and failure

The example above can be represented by an mttcfqule(x, x2)) — (g2, 1) (+(B, +(C, A(B,C)))),

for instance. We will show that every mtt can be simulated by a non-erasing mttcf.

7

Lemma 2. Let M be a mtt. There exists effectively a lineaftnd a canonical mttch/’ such that)/’
is non-erasing andg ; 7);» = 7). Path-linearity is preserved fromy to M’ .

Proof. The idea is, we first predict all erasing beforehand and annotate each input node by the informa-
tion of erasing, by using a preprocessing linear tt. Then we replace all erasing state callg, (e.5(v1)
with the rule(q, .. .)(y1) — w1) in the right-hand sides of rules with the result of the erasing call (e.g.,
u1). Note that we have to deal with nondeterminism. Suppose we have two(gutesy1, y2) — y1
and(q,o)(y1,y2) — y2 and a state callg, z1)(u1,u2) in a right-hand side. In order to preserve the
nondeterminism, we replace the state calkby:;, u2).

Let M = (Q, X, A, qo, R). We defineE to be a nondeterministic linear tt with the set of states
P =[Q — 2™ U {po} (functions fromQ to 2{1-"} wheren is the maximum rank of the states
of), and one distinct statgy, which is the initial state), the input alphahgt the output alphabet
2, = {(o,p1,...,p)® | o € ¥ p; € P}, and the following rules for every*) ¢ X and
Pl bk € 1Q — 28 (p o (a1, .. xk)) — (o,p1, - pR) (P21, - - -, (i, 1)) Wherep €
{po, (g — U{f(r) | {¢g,...)(-..) — r € R})} with f recursively defined as followst(y;) = {i},
FO0(...)) =0, andf((¢,z;)(r1,...,rm)) = U{f(r:) | i € pj(¢')}. The transduceE modifies the
label o(¥) of each input node into the forifw(®), py, ..., p). The annotated informatiopy intuitively
means “if a statg of M is applied to the-th child of the node, it will erase and return directly #h
parameter foe € p;(q)”. If p;(¢) = 0 then no erasing will happen. The rule Bfis naturally understood
if it is read from right to left, as a bottom-up translation. Formally speaking, the following claim holds.
It is easily proved by induction on the structuresof

Claim. (1) For eachs € T andq € QU™, there is a unique € P\ {po} such thatlp, s)| z # 0, and
e € p(q) ifandonly ify. € (g, s)(y1,--.,ym)lnm. (2) Let us denote bis| suchp determined by. The
outputs’ € 7x(s) is unique. Fob € pogs) = pogs’), label(s’,b) = (label(s, b), [s|p.1], - - -, [S|p.k])-

We next define a non-erasing mttcf, using the annotation addéd bgt M’ = (Q, X, A, qo, R') with
R = {{¢q,(o,p1,-- - o) (@1, -, 2)) (Y1, Ym) = 7' | 1 € Ryo, v’ € n&(r),r" ¢ Y} where the set
ne(r) is defined inductively by

ne(y;) = {y;}
ne(d(ry,...,r)) ={6(r},...,r)) | ri € ne(r;y)}
ne((q’, ;) (r1,...,m)) = | J{ne(ri) | i € p;(d)} U{(d, z;)(nepr1), ..., nep(r))},

andnepdefined as followsnef(y;) = v;, nefd(r1,...,r;)) = d(negry),...,nepr;)), andnep((¢,
zi)(r1,...,r)) = +(ur, +(ue, ..., +(us,0)---)) where{uy, ..., u.} = ne((¢, ;) (r1,...,r)). In-
tuitively, neadds rules by replacing each top-level state calls with its argument if the state call is erasing
according to the annotatign;’s. The other functiomepdoes essentially the same thing for non top-
level positions, but by replacing erasing state calls witthoices instead of adding rules to preserve the
Ol-nondeterminism. It should be clear from the definition thé&tis canonical and non-erasing. Since
neonly returns a set of subtrees of a right-hand siseandnepnever add any new nesting among state
calls, and thug\/’ is path-linear ifM is.

The correctness of this construction is proved by induction on the structure of the inpst Inge
showing that IfullM = u;lM/ then (q, S> (’U,l, ces ,uk)lM = (q, TE(8)>(U/1, - ,u%)er U U{ule |
yi € (q,8)(y1,--.,yk)lar}- Applying this to the initial state, proves the equatiory; = 75 ;3. O

4.2 Input-Deletion

The second kind of deletion we investigate is “input-deletion”. For instance, if there is th@sudgx
x2)) — A({qo,x2)) for the initial stategy and the input is of the form(¢;, t2), then the subtreg is
never used for the output calculation. Although total deterministic mtts can bemoadeletingdi.e., to

8

always traverse all subtreeseferyinput tree) by preprocessing with a deleting linear tt [17], it becomes
more difficult for nondeterministic mtts. This is because of the nondeterminism, which means that there
can be more than one possible computation for a single input tree, and we cannot avoid the situation that
one of the computations traverses all subtrees while others do not. Consider theg(t; , t2)) and

the following set of rules:

(q1,a(w1,22)) — (g2, 71)((g3, 72)) (g3, c(x1,72)) — (qa,71)
(q2,0)(y1) — Aly1,y1) (g3, c(x1,22)) — (q4,72)

Note that the state call fag is duplicated by Ol semantics; even though the mttis linear. There are three
possibilities with respect to input-deletion: eithteris deleted (the case all duplicategl calls choose

the seconds-rule), t5 is deleted (the case all choose the first rule), or no deletion occurs. We can still
construct a linear tt that does preliminarily deletion, in such a way that it nondeterministically returns
a(b, ca(t2)), a(b, c1(t1)), ora(b, ci2(t1, t2)) (the subscript or identifies the non-deleted children). We
can also modify the mtt as follows

(g3, c1(x1)) — (qa, 1) (g3, c12(x1, 22)) — (q4,71)

<QS7 ca(z1)) — (q4, 1) <QS7C12(«T17332)> — (qa, ®2)

in which rules using the “deleted” input subtrees are removed. Then, for the former two “deleted” in-
stances of the input trees, the mtt is successfully non-input-deleting. But sadly, this mtt still may delete
for the last instance of the input tree, when all duplicated c,2) calls choose the same rule. The
point is, under nondeterminism, we cannot argue the input-deleting property draastiucer Rather,
we can only argue whether eacbhmputationis input-deleting or not. This is a weaker version of the
nondeletion condition used for total deterministic mtts, but it is sufficient for our purpose.

In order to speak more formally, here we define the notiaroafiputation treg¢following the method
of [3], but extending it to deal with accumulating parameters). For any finit® see define the ranked
alphabetP = {p(\) | p € P}. Let M = (Q, X, A, qo, R) be an mttcf and € T’s;. The selCOMP(M, s)
is the set of tréesomp(qo,g)l C Taupos(s) Calledcomputation treeg¢or sometimes, simplgomputa-
tions). The derivatiorcomp(qo, €) | is carried out under the following set of rewriting rules with outside-
in derivation:+(uy, uz) — u1, +(u1,u2) — ue, andcompq,v)(y) — f.(r) forq € Q, v € pogys),
T € Ry jabei(s,p) Wheref, is inductively defined as follows:

fu(yi)
fo(6(re, ... rE))
folld @) (re, i)

Intuitively, COMP(MM, s) is the set of treegqo, s)| where the parent of eacli-node is a monadic
node labeled by the position in the input trethat generated tha-node. For example, the output tree
e(ae.1(9),e.2(v(e(d))))) means that thee andd nodes are generated at the root node of the input tree,
and thes and~ nodes are generated at the first and the second child of the root node, respectively. Let
delposbe the translation that removes alle pogs) nodes. It is easily proved by induction on the
number of derivation steps thdelpogCOMP(M, s)) = (qo, s) | s, 1.€., if we remove alpogs) nodes
from a computation tree, we obtain an output tree of the original mitt.

We say that a computation treds non-input-deletingf for every leaf positionv € pogs), there is
at least one node in labeled byv. Note that the rewriting rules @ompcorresponding to erasing rules
do not generate anyoqs) node. Thus, non-input-deletion implies that not only some state is applied to

every leaf, but also aon-erasingule of some state must be applied.

Yi
H(é(fu(rl)7 T 7fV(Tk))
compq’, v-3)(fu(r1), -+ 5 fu(T)))-

Lemma 3. Let M be a canonical non-erasing mttcf. There effectively exists a lindaartd a canonical
non-erasing mttcf/’ such thatry; = 77 ; 7547, and for every input-output pais, t) € 7/, there exists
a trees’ and a computation tree €¢ COMP(M’, s’) such that(s, s’) € 77, ¢ = delpogu), andu is
non-input-deleting. Alsa)/’ is path-linear if M is.

Proof. Let M = (Q, X, A, qo, R). We definel as({d}, ¥, %', d,U) whereX! = {(o,i1,...,im)"* |
o®) e ¥ 1<iy < <ip, < k}and

U={{d,o(x1,...,2)) = (0,01, ...,0m){d,xi,), ..., {d,x;)| (0,i1,...,0im) € X'}

The transducef reads the input tree and nondeterministically deletes subtrees while encoding the num-
bers of the undeleted subtrees in the current label. We define themit@a$(Q, 2’/, A, qo, R') where

R ={{q,(0,i1,-yim)(@1, .-, 2m)) (@) — 1’
| r € R, such that for all top-level call§;, z,) inr,p € {i1,...,im}, andr’ is obtained by
replacing(q’, ;) in ~ with (¢, z;) and(q’, z,) with 6 for p ¢ {41, ..., im}}.

The transducei/’ has basically the same rules &5 except that state calls on ‘deleted’ children are
replaced by (or, if it is at the top-level then the rule is removed, to preserve canonicity). It should be
easy to see that/’ is canonical and non-erasing, and preserves the path-lineadtf. of

The correctness of this construction is proved as follows. Note that there is the natural one-to-one
correspondence between the sefb)-rules of M and the set ofq, (o, 71, . . ., im))-rules of M. First,
we can prove (1) (77(s)) € 7ar(s) by induction on the number of derivation stepshifi, showing
that for each derivation step M’ we can always apply the corresponding rewriting rulé4rand obtain
the corresponding (i.e., differs only at state calls on ‘deleted’ nodes that are replacék setitential
form, which proves that we can obtain the same final output as,;. by 73,. Next, we show that (2) for
anyu € COMP(M, s), there exists an equivalent non-input-deleting computations’List the minimal
substructure of that contains all nodes and their ancestors contained Thens’ € 7;(s) assuming
thats’ is appropriately relabeled froth' to X’ as the transducdrdoes, and we can similarly prove that
we can obtain a computatiari € COMP(M’, s") corresponding ta: by induction on the number of
derivation steps (here, non-erasure assures that we can always choose the ‘corresponding’ rule; if a state
call compg, p) is rewritten in the derivation o, then a node labelegl must be generated for some
descendant’ of p, and thus the node correspondingt@nd its ancestags are kept not removed i).
Then, by the construction we hadelpogu) = delpogu’), and sinces’ is the minimal substructure of
s that contains all nodes occurredipall leaf nodes of’ occur inu/, which means that’ is non-input-
deleting. Note that (2) impliesy;(s) C 7y (77(s)). Therefore, together with (1), we hawe; 73 = s
as desired. 0

4.3 Skipping

The third and last kind of deletion is “skipping”. A computation treés skippingif there is a node

v € pogs) labeled by a rank-1 symbol such that no node is labeledv. For a canonical, non-erasing,
and path-linear mttcf, skipping is caused by either one of the following two forms of rules. One type is
of the form{q, o(z1))(y1,- - -, ym) — (¢, x1)(u1, ..., u,) whereu; € Ty, and such rules are called
skipping The others are rules which are not skipping but are of the farra(x1))(y1, ..., ym) —

(¢, x1)(u1, ..., uy) Whereu; € Tauyuc, and such rules are calleghasi-skippingNote that, since the
mttcf is path-linear, there are no nested state calls in right-hand sides of rules for input symbols of rank 1.
Also note that if the root node of the right-hand side of a rule is not a state call, then it must-bede

since the mttcf is canonical and non-erasing. So an application of such a rule genefatesia and

thus av € pogs) node for the current input node. Therefore, it is sufficient to consider only skipping
and quasi-skipping rules.

10

Quasi-skipping rules may cause skipping computations due to parameter deletion: for example, con-
sider the quasi-skipping rule, o (z1))(y1) — (¢, x1)(6(y1)); if there is ag’-rule with a right-hand side
not usingy;, then thes-node may be skipped. For total deterministic mtts [17], there is a “parameter
non-deleting” normal form, i.e., every total deterministic mtt is equivalent to one that uses all parameters
in the right-hand sides of its rules, and thus only skipping rules (without choice nodes) were considered
there. Unfortunately, as for non-erasure, we could not find such a normal form for nondeterministic
mtts. Instead, we add some auxiliary skipping rules to mttcfs, so that we only need to consider skipping
rules. Note that quasi-skipping rules cause skipping computations only when parameters are deleted.
The idea is, if a parameter in some rule is never used for a computation, then replacing the parameter
by a failure symbob does not change the translation, and moreover, such replacement changes a quasi-
skipping rule into a skipping rule. Thus we may assume that all skipping computations are caused by
skipping rules, and hence we can straightforwardly extend the proofs for total deterministic mtts [17]
and nondeterministic tts [3].

Lemma 4. Let M be an canonical, non-erasing, and path-linear mttcf. There exists effectively a linear
tt S and a canonical, non-erasing, and path-linear mtt¢f such that (1)rs ;7 = 7as and (2) for
every input trees and non-input-deleting computation trees COMP()M, s), there exists a tree’ and

a computation tree’ such thats’ € 7s(s), v’ € COMP(M’, s'), delpogu’) = delpogu), andw’ is both
non-input-deleting and non-skipping.

Proof. Let M = (Q, ¥, A, qo, R). We defineN = (Q, X, A, qo, R U R) with:

R={{q,0(x1))(#) — 1" | g€ Q,0 € ¥V r € R, ,,ris quasi-skipping
andr’ is obtained by replacing all subtreesrof the formd(---),6 € A by 6}.

Obviouslyry; € 7, and it should be also clear that C 7,4, because in each derivation &f, we can
replace every application d® rules by the corresponding rules i

Furthermore, we can similarly prove that for any non-input-deleting computattdrfCOMP(N, s)
andU the set of rank-1 nodes ofthat are skipped im, there is a derivation that derivasand does not
apply quasi-skipping rules to apye U. Suppose a quasi-skipping rulés applied toanodg € U ina
derivation ofu. Then, since allA-nodes inp are skipped in: (that means, they never come to top-level
position during the derivation), we can always replace the application with the corresponding skipping
rule in R (recall that it is obtained by replacing all-nodes by#) without changing the final output
computationu. Thus, for N, without loss of generality we may assume that all skipping computation
are caused by skipping rules.

We defineS as(H, X, X x H, ho,U) whereH = J, [Q™ — (J, P(Q™ x P({1,...,m})")]
with P denoting power sefyy = q — {(q,{1},{2},..., {rank(q¢)})}, and

U= {<h,U(ZL'1,. . ,.%'k)> — (U,h)(<h0,.1‘1>,. . .,<h0,xk>) | ocelX he H}
U{(h,o(z1)) = (h,z1) | o € 2V h e H}}

whereh/ is the function

hlo‘ =g {(q/,af(rlazjv . '7f(rlaz)}) |
(q,t1,. .. tn) € h(q),
(d,o(x1))(y1s - yn) — (¢" 1) (r1,...,m) € RUR, 7 € Tyuc}

with f inductively defined asf (y;, t1, ..., tm) = tj, f(0,t1,. .., tm) = 0,andf(+(r1,72), t1, - -, L)
= f(ri,tn, oo ytm) U f(ro i1, oo ytm).

11

The transducef reads the input tree and nondeterministically deletes sequences of rank-1 nodes,
while encoding the possible way to pass parameters by skipping rules. Such information on parame-
ter passing is encoded as a functibne H. For example, one possible output 8ffrom the input
a(b(c(--+))))is (c,h)(---), in whicha andb nodes are deleted and the information is encoded in
Intuitive meaning of each is, “if (¢/,1,...,tn) € h(q), then when a state were applied to the root
of the deleted sequence of rank-1 nodes with parameters. , t,,, then N would have skipped the
sequence, and reached a statwith parameters,; ,...¢; ,i; € ¢; for 1 < j < n”. The initial stateh
means that “no node was skipped so far”.

We then defineV/’ as(Q, X x H, A, qo, R') where

in s

R = {{q,(o,h)(x1, ..., 2)) (Y1, -+ Ym) — T[y1/iset(t1), -, yn/iset(ty)]
| (¢ 1y tn) €ER(g),” € Ry o}

with iset({i1,...,ip}) = +Wir, + Wiy, » +(¥i,,0)---)). Since M is canonical, non-erasing, and
path-linear, clearly so i3/’

It should be easy to verify that the definitionaf’ andS follow the above intuition. The composition
75 ; Tam = Ty @nd the existence of a non-skipping computation can be proved similarly as for Lemma 3.
Namely, to construct a non-skipping computatidrirom a computation. € COMP(1, s), we take the
intermediate tre@’ as the tree obtained fromby deleting all rank-1 nodes not contained.inThen by
induction on the number of derivation steps, we can construct an equivalent non-skipping computation
u' € COMP(M', s"). 0

4.4 Counting the Number

Lemmabs. Let M = (Q, X, A, qo, R) be an mttcfs an input tree, and: a non-input-deleting, non-
skipping computation tree in COMP/, s) with delpogu) = ¢. Then|s| < 2[¢].

Proof. Sincew is non-input-deleting and non-skipping, for all nodes pos(s) of rank zero or one,
there exists a node labeledn «, and by definition of computation trees, its child node is labeled by a
symbol inA. Thus,leavesgs) + ranklnodeés) < |t| whereleavess) is the number of leaf nodes ef
andranklnodess) is the number of nodes aflabeled by rank-1 symbols. Singé < 2 x leavess) +
ranklnodegs) (this holds for any tree), we havels| < 2|¢| as desired. 0

5 Complexity of Compositions of MTTs

Lemma 6. LetXC € {NSPACHEn), NP} and F’ a class offC languages effectively closed unddr. Then
LMT (F') andT(F') are also ink.

Proof. Let M be a linear mtt or a tt. Note that in both cas#$,is path-linear. First, we make it non-
erasing; by Lemma 2, there exist a lineattand a canonical, non-erasing, and path-linear mifgf
such thatrg ; 7, = 7as. Next, we make each computation non-input-deleting; by Lemma 3, there
exist a linear tt/ and a canonical, non-erasing, and path-linear miefsuch thatr; ; 7y, = 7a,-
For every(s1,t) € 7, there is an intermediate treg and a non-input-deleting computatian €
COMP(M3, s2) such that(s, s2) € 71 anddelpogu) = ¢. Then, we make each computation non-
skipping; by Lemma 4, there exist a lineatStand a canonical, non-erasing, and path-linear nitfgf
such thatrs ; Tas, = 7a,. FOr every non-input-deleting computatiane COMP(M3, s2), there is an
intermediate tree; and a non-input-deleting, non-skipping computatiore COMP(3, s3) such that
(s2,s3) € g anddelpogu’) = delpogu). Altogether, we haver ; 77 ;75 ; 7ar, = 7ar, @and for every
(s,t) € T there exists a treg; such that(s, s3) € 7 ; 77 ; 79 and a non-input-deleting, non-skipping
computatior’ € COMP(M3, s3) such thatelposu') = t. By Lemma 5s3| < 2|¢].

12

Let L be a language ifi'. To check whethet € 7,,(L), we nondeterministically generate every tree
s’ of size|s’| < 2|t| and for each of them, test whethef,t) € 75z, ands’ € (7 ;77;75)(L). By The-
orem 1, the former test can be done nondeterministicady(ig’| + |t|) = O(|t|) space and polynomial
time with respect tdt|. By the assumption that is closed under LT, the languadez ; 77 ; 75)(L) is
also inkC. Thus the latter test is in complexity with respect tds’| = O(|¢]).]

Note that, for T, the same decomposition as shown in the first paragraph of the proof of Lemma 6 is
already known (Lemma 1 of [3]). And since by Theorem 1 of [3] the translation membership of a single
tt is in DSPACHEn), for T, the above result also holds fiir= DSPACEnR).

Lemma 7. LetKC € {NSPACEn), NP} and F’ a class offC languages effectively closed unddr. Then
MT (F') is also inKC and effectively closed undef .

Proof. The closure under LT immediately follows from the following known results: MTD;:MT ; T
(Corollary 6.12 of [12]), T, LT = D;QREL; T (Lemma 2.11 of [9]), and IMT ; D;QREL C D;MT
(Lemma 11 of [11]). By Lemma 2.11 of [9] and Theorem 2.9 of [8]LT C LT ; T, which implies that
T(F) is also closed under LT. By the decomposition MTD; T ; LMT (page 138 of [12]), MTF) C
LMT (T(F')). By applying Lemma 6 twice, LM{T(F)) is in K. O

Theorem 8. MT*(REGT) C NSPACEn) N NP-complete

Proof. The class REGT is closed under LT (Propositions 16.5 and 20.2 of [15]) and is in NSRAGE

NP (see, e.g., [15]). By induction dn> 1 it follows from Lemma 7 that MT(REGT) is in NSPACHn)

and NP. As noted in the Introduction, NP-hardness follows from [23] and the fact that the indexed
languages, which are equivalent to the yields of context-free-tree languages under Ol-derivation, are in
MT2(REGT). O

Although we only have considered outside-in evaluation order up to here, the previous result holds for
compositions of mtts innside-outevaluation order. This is because T= MT* by Theorem 7.3
of [12], where MT;o denotes the class of translations realized by mtts in inside-out evaluation order.

Corollary 9. MT{,(REGT) C NSPACEn) N NP-complete

Theyield translation, which translates a tree into its string of leaf labels from left to right (seen as a
monadic tree), is in PMT. Therefore the output string languagesld(MT*(REGT)) of mtts are also in

the same complexity class as Theorem 8. Especially, this class contains the 10- and OlI- hierarchies [6].
Note that the 10-hierarchy is indMT*(REGT) and hence in DSPAQE) by Corollary 17 of [17]. Since

the first level of the Ol-hierarchy are the indexed languages [13] which are NP-complete [23], we obtain
the following.

Corollary 10. The Ol-hierarchy is iINSPACEn) N NP-complete

Acknowledgment his work was partly supported by the Japan Society for the Promotion of Science.

References

1. A.V. Aho. Indexed grammars—an extension of context-free gramrdafsCM, 15:647—671, 1968.

2. P.R.J. Asveld. Time and space complexity of inside-out macro languinge3. Comp. Math.10:3-14, 1981.

3. B. S. Baker. Generalized syntax directed translation, tree transducers, and lineaBsfisté. Comp.7:376-391, 1978.

4. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML documentlireelyst, 33:456-474,
2008.

5. B. Courcelle. Monadic second-order definable graph transductions: A slitve§omp. S¢126:53-75, 1994.

6. W. Damm. The IO- and Ol-hierarchiesh. Comp. S¢20:95-207, 1982.

7. F. Drewes and J. Engelfriet. Decidability of the finiteness of ranges of tree transdutitfoasad Comp.145:1-50, 1998.

8. J. Engelfriet. Bottom-up and top-down tree transformations — a compahsath. Sys. Th.9:198-231, 1975.

13

10.
11.

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.

J. Engelfriet. Top-down tree transducers with regular look-ahidath. Sys. Th.10:289-303, 1977.

J. Engelfriet. The complexity of languages generated by attribute gram®&iaid.J. Comp.15:70-86, 1986.

J. Engelfriet and S. Maneth. Output string languages of compositions of deterministic macro tree tranddGoeng.
Sys. Scj.64:350-395, 2002.

J. Engelfriet and H. Vogler. Macro tree transducdr€omp. Sys. S¢i31:71-146, 1985.

M. J. FischerGrammars with Macro-Like Production®hD thesis, Harvard University, Cambridge, 1968.

Z. Rilop and H. VoglerSyntax-Directed Semantics: Formal Models Based on Tree Transd&@risger-Verlag, 1998.
F. Gecseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, étiitatbpok of Formal Languages,
Vol 3: Beyond Wordpages 1-68. Springer-Verlag, 1997.

B. Leguy. Grammars without erasing rules. the Ol cas@&rdas in Algebra and Programmin981.

S. Maneth. The complexity of compositions of deterministic tree transducefSTIRCS2002.

S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree transdude@DH 2005.

S. Maneth and G. Busatto. Tree transducers and tree compressiBoSSaCS2004.

T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformersPl@DS 2000.

T. Perst and H. Seidl. Macro forest transduckrfrmation Processing Letter89:141-149, 2004.

W. C. Rounds. Mappings and grammars on tréath. Sys. Th.4:257-287, 1970.

W. C. Rounds. Complexity of recognition in intermediate-level languagdsO®@S 1973.

J. W. Thatcher. Generalizegequential machine map3. Comp. Sys. S¢i4:339-367, 1970.

14

