
The Complexity of Tree Transducer Output Languages

Kazuhiro Inaba1 and Sebastian Maneth2,3

1 The University of Tokyo,kinaba@is.s.u-tokyo.ac.jp
2 National ICT Australia,sebastian.maneth@nicta.com.au

3 University of New South Wales, Sydney

Abstract. Two complexity results are shown for the output languages generated by compositions of macro
tree transducers. They are in NSPACE(n) and hence are context-sensitive, and the class is NP-complete.

1 Introduction

Macro tree transducers (mtts) [12, 14] are a finite-state machine model of tree-to-tree translations. They
are motivated by syntax-directed semantics of programming languages and recently have been applied to
XML transformations and query languages [18, 21]. Mtts are a combination of top-down tree transduc-
ers [22, 24] and macro grammars [13]. They process the input tree top-down while accumulating several
output trees using their context parameters. Sequential composition of mtts gives rise to a powerful hi-
erarchy (the “mtt-hierarchy”) of tree translations which contains most known classes of tree translations
such as those realized by attribute grammars, by MSO-definable tree translations [5], or by pebble tree
transducers [20]. Consider the range, or output language, of a tree translation; it is a set of trees. If we
apply “yield” to these trees, i.e., concatenate their leaf symbols from left to right, we obtain a string lan-
guage. The string languages obtained in this way from the mtt-hierarchy form a large class (containing
for instance the IO- and OI-hierarchies [6]) with good properties, such as being a full AFL and having
decidable membership, emptiness, and finiteness [7].

In this paper we study the complexity of the output (string or tree) languages of the mtt-hierarchy.
Note that we do not explicitly distinguish between string or tree output languages here, because the
translation “yield” which turns a tree into its frontier string (seen as a monadic tree) is a particular sim-
ple macro tree translation itself and hence the corresponding classes have the same complexity. Small
subclasses of our class of languages considered here are the IO-macro languages (or, equivalently, the
yields of context-free-tree languages under IO-derivation) and the string languages generated by attribute
grammars. Both of these classes are LOG(CFL)-complete by [2] and [10], respectively. Another subclass
of our class is that of OI-macro languages, which are equivalent to the indexed languages [1], by [13].
This class is known to be NP-complete [23]. Hence, our class is NP-hard too (even already at level
2). Our first main result is that output languages of the mtt-hierarchy are NP-complete; thus, the com-
plexity remains in NP when going from indexed languages to the full mtt-hierarchy. In terms of space
complexity, languages generated by compositions of top-down tree transducers (mtts without context
parameters) are known to be in DSPACE(n) [3]. This result was generalized in [17] to compositions of
total deterministicmtts. Our second main result is that output languages of the mtt-hierarchy (generated
by compositions ofnondeterministicmtts) with regular tree languages as inputs are in NSPACE(n) and
thus are context-sensitive. The approach of our proof can be seen as a generalization of the proofs in [3]
and [17]; moreover, we make essential use of the idea of compressed representation of backtracking
information, used by Aho in [1] for showing that the indexed languages are in NSPACE(n).

We first solve the “translation membership” problem for a single mttM . That is, we show that, given
treess andt, we can determine whether or not the pair(s, t) is in M ’s translation, in linear space and
polynomial time with respect to|s| + |t| on a nondeterministic Turing Machine (|s| denotes the size
of the trees). The challenge here is the space complexity; we use a compressed representation ofM ’s
output trees for inputs, inspired by [19], and then check ift is contained using a recursive procedure

in which nodes needed for backtracking are compressed using a trie, similar to Aho’s compression of
index strings in [1]. Then, we generalize these results from one mtt to compositions of mtts. Here, the
challenge is the existence of intermediate trees. Consider the compositionτ of two translations realized
by mtts:τ1 followed byτ2. To check(s, t) ∈ τ , we nondeterministically guess an intermediate treeu,
and check whether(s, u) ∈ τ1 and(u, t) ∈ τ2. From the complexity result of single mtts, we know
that this can be done inO(|s| + |u| + |t|) space. This can, however, be much larger thanO(|s| + |t|);
the size|u| of the intermediate treeu can actually be double-exponentially larger than|s| and|t|. The
basic idea to prove the linear size complexity for compositions of mtts is to bound the sizes of all such
intermediate input trees. This is achieved by putting the mtts in certain normal forms such that they do
not delete much of their input, in the sense that every output treet has a corresponding input tree of size
only linearly larger than|t|. In fact, also the initial input trees can be changed into a smaller trees′ of
size linear in|t|, for which τ(s′) = τ(s). Limiting the size of intermediate trees can also be used for
showing the time complexity NP. We nondeterministically guess all linear size intermediate trees, and
test the translation membership of each single mtt in polynomial time.

Although the idea of bounding the size of intermediate trees is quite similar to [3] and [17], the
existence of context parameters and nondeterminism together adds some difficulty in every step of the
proof. For example, consider the mttMdexp with the following three rulesr0, r1, andr2:

⟨q0, a(x)⟩ → ⟨q, x⟩(⟨q, x⟩(e)) (r0) ⟨q, e⟩(y) → +(b(y, y), c(y, y)) (r2)
⟨q, a(x)⟩(y) → ⟨q, x⟩(⟨q, x⟩(y)) (r1)

Here,+ denotes a nondeterministic choice; e.g., when the stateq reads an input node labelede, it
generates an output node labeled eitherb or c. This mtt takes a tree of forma(a(· · · a(e) · · ·)) as input
(with n occurrences ofa) and generates a full binary tree of height2n (note that, without parameters, the
height growth can only be linear) with each non-leaf node arbitrarily labeled eitherb or c. Therefore,
the size of the set of possible output trees is222n

. To decide whether(s, t) ∈ τMdexp
for given treess

andt, we essentially have to find the correct choice among the triple exponentially many candidates. To
address the issue, we (1) instead of solving the membership problem for all mtts, only deal with mtts in
the above mentioned non-deleting normal form, and which are linear with respect to the input variables,
and (2) exploit the compressed representation of outputs of mtts [19] for manipulating the output set.

Note that due to nondeterminism we cannot anymore obtain some of the useful normal forms (non-
erasing, which is similar to having noϵ-moves in a string transducer, and non-parameter-deleting) used
in [17] for total deterministic mtts. We address this issue by introducing a slight extension of mtts,
namely,mtts with choice and failure, which re-enable us to have the non-erasing normal form, and
compensate the absence of the non-parameter-deleting normal form.

2 Preliminaries

We denote byϵ theempty list, i.e., a list of length 0, and byl1.l2 the concatenation of two listsl1 and
l2. A list l is said to be aprefix of a list l′ if there is a listl′′ such thatl.l′′ = l′, and to be aproper
prefix if l′′ ̸= ϵ. For a finite setA, we denote by|A| the number of its elements. A finite setΣ with a
mappingrank : Σ → N is called aranked alphabet. We often writeσ(k) to indicate thatrank(σ) = k
and writeΣ(k) to denote the subset ofΣ of rank-k symbols. Theproductof Σ and a setB is the ranked
alphabetΣ×B = {⟨σ, b⟩(k) | σ(k) ∈ Σ, b ∈ B}. Throughout the paper, we fix the sets of input variables
X = {x1, x2, . . . } and parametersY = {y1, y2, . . . } which are all of rank 0, and the set of choice nodes
C = {θ(0), +(2)}. We assume any other alphabet to be disjoint withX, Y , andC. The setXi is defined
as{x1, . . . , xi}, andYi is defined similarly.

The setTΣ of treest over a ranked alphabetΣ is defined by the BNFt ::=σ(
k︷ ︸︸ ︷

t, . . . , t) for σ ∈
Σ(k). Instead ofσ() we usually writeσ. We recursively define the functionlabelΣ from TΣ × N∗ to

2

Σ as follows. Fort = σ(t1, . . . , tk), σ(k) ∈ Σ, k ≥ 0, andt1, . . . , tk ∈ TΣ , labelΣ(t, ϵ) = σ and
labelΣ(t, i.ν) = labelΣ(ti, ν). Thus, the empty listϵ denotes the root node andν.i denotes thei-th
child of ν. We omit the subscriptΣ if clear from the context. We define the setpos(t) = {ν ∈ N∗ |
label(t, ν) is defined}. For p ∈ pos(t), t|ν denotes the subtree oft rooted at the nodeν. We write |t|
as a shorthand for|pos(t)|. A subsetL ⊆ TΣ is called atree language. By REGT, we denote the class
of regular tree languages[15]. Let Σ and∆ be ranked alphabets. A relationτ ⊆ TΣ × T∆ is called a
tree translation(overΣ and∆) or simply a translation. For two translationsτ1 andτ2, their sequential
compositionτ1 ; τ2 (“τ1 followed byτ2”) is the translation{(x, z) | ∃y((x, y) ∈ τ1, (y, z) ∈ τ2)}. For
two classesT1 andT2 of translations, we defineT1 ; T2 = {τ1 ; τ2 | τ1 ∈ T1, τ2 ∈ T2}. Thek-fold
composition of the classT of translations is denoted byT k. For a tree languageL and a translationτ ,
τ(L) =

⋃
{τ(t) | t ∈ L}.For a classF of languages and a classT of translations, we denote byT (F)

the class of output languages{τ(L) | τ ∈ T,L ∈ F}.
A macro tree transducer (mtt)M is a tuple(Q,Σ,∆, q0, R), whereQ is the ranked alphabet of

states, Σ and∆ are theinput andoutputalphabets,q0 ∈ Q(0) is theinitial state, andR is the finite set
of rulesof the form⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym) → r whereq ∈ Q(m), σ ∈ Σ(k), andr is a tree in
T∆∪(Q×Xk)∪Ym

. Rules of such form are called⟨q, σ⟩-rules, and the set of right-hand sides of all⟨q, σ⟩-
rules is denoted byRq,σ. We always assumeΣ(0) and∆(0) (and thus,TΣ andT∆) are non-empty. The
rules ofM are used as term rewriting rules in the usual way. We denote by⇒M the derivation relation
of M on T(Q×TΣ)∪∆, and byu↓M the set{t ∈ T∆ | u ⇒∗

M t}. Note that “state-calls”⟨q, xi⟩ can be
nested and therefore different orders of evaluation yield different trees. Unless otherwise specified, we
assume theoutside-in(OI) derivation in which we always rewrite the outermost (= top-most) state calls.
By Corollary 3.13 of [12], this order of evaluation yields the same set of output trees as theunrestricted
order, i.e., the case where no restriction is imposed on the order of evaluation. Thetranslation realized
by M is the relationτM = {(s, t) ∈ TΣ × T∆ | t ∈ ⟨q0, s⟩↓M}. We omit the subscriptM if it is clear
from the context. We denote by MT the class of translations realized by mtts. An mtt is called a top-down
tree transducer (tt) if all its states are of rank 0; the corresponding class of translations is denoted by T.
We call an mttdeterministic(total, respectively) if for every⟨q, σ⟩ ∈ Q×Σ, the number|Rq,σ| of rules
is at most (at least) one; the corresponding classes of translations are denoted by prefix D (t). An mtt is
linear (denoted by prefix L) if in every right-hand side of its rules each input variablexi ∈ X occurs at
most once. The same notation is used for tts; for instance, DtT denotes the class of translations realized
by total deterministic tts.

Macro Tree Transducers with Choice and Failure For a technical reason, we define a slight
extension of mtts. Anmtt with choice and failure (mttcf)M is a tuple(Q,Σ,∆, q0, R) defined as
for normal mtts, except that the right-hand sides of rules are trees inT∆∪(Q×Xk)∪Ym∪C (recall that
C = {θ(0), +(2)}). The derivation relations (⇒M and↓M) and the realized translation (τM) are defined
similarly as for mtts, with two additional rewrite rules:+(t1, t2) ⇒M t1 and+(t1, t2) ⇒M t2. Thus,+
denotes nondeterministic choice andθ denotes failure (because there is no rule for it). Again, we assume
the outside-in evaluation order. For a right-hand sider of an mttcf, we say a positionν ∈ pos(r) is
top-levelif for all proper prefixesν ′ of ν, label(r, ν ′) ∈ ∆∪C. We say an mttcf iscanonicalif for every
right-hand sider and for every top-level positionν ∈ pos(r), label(r, ν) /∈ C.

The idea of the choice and failure nodes comes from [12]; there they show that MT= DtMT ; SET,
where SET is the class of translationsset∆ : T∆∪C → T∆ with set∆(θ) = ∅, set∆(+(c1, c2)) =
set(c1) ∪ set(c2), and set∆(δ(c1, . . . , ck)) = {δ(t1, . . . , tk) | ti ∈ set∆(ci)} for δ ∈ ∆. Let us
briefly summarize the proof. For any mttcf (or mtt)M , we can always construct a total determinis-
tic mttcf M ′ that realizes the same translation, by taking the⟨q, σ⟩-rule of M ′ as⟨q, σ(· · ·)⟩(· · ·) →
+(r1, +(r2, . . . , +(rn, θ) · · ·)) where{r1, . . . , rn} = Rq,σ. Also note that the mttcfM ′ = (Q,Σ,∆,
q0, R

′) can be regarded as the mttM ′′ = (Q,Σ,∆ ∪ C, q0, R
′), by merely interpreting theθ and+

nodes as output symbols. Each output ofM ′′ is a “choice tree” denoting the set of possible output

3

trees. Obviously, the translationset∆ carries out this interpretation of choice trees, and thus we have
τM = τM ′′ ; set∆.

The reason why we introduce mttcfs is twofold. One reason is the decomposition result explained
above, through which we give the complexity bound of a single mtt translation in Section 3. The other
reason is its more flexible use of nondeterminism and partiality. Suppose an mttcf rule⟨q, σ(x1)⟩(y1) →
⟨p, x1⟩(+(δ1, δ2)). This could produce more output than an mtt with the pair of rules⟨q, σ(x1)⟩(y1) →
⟨p, x1⟩(δ1) and⟨q, σ(x1)⟩(y1) → ⟨p, x1⟩(δ2), because the statep may copy its parameter. Although in
fact we can still emulate+ andθ by introducing auxiliary states, it seems much simpler to use+ andθ.
For example, mttcfs have simple normal forms, such as non-erasure (Section 4.1), while the emulating
mtts do not have such a normal form.

3 Complexity of a Single MTT

In this section we show that for any canonical mttcfM having properties calledpath-linearandnon-
erasing, there is a nondeterministic Turing Machine that decides whether a given pair(s, t) of trees is in
τM in O(|s| + |t|) space and in polynomial time with respect to|s| + |t|. Thus, this “translation mem-
bership” problem is in NSPACE(n) and NP. Two previous works on the same membership problem for
restricted classes of macro tree transducers – for total deterministic mtts [17] and for nondeterminis-
tic mtts without parameters (top-down tree transducers) [3] – both give DSPACE(n) algorithms. First
let us briefly explain where the difficulty arises in our case, i.e., with nondeterminism and parameters.
For total deterministic mtts, the DSPACE(n) complexity is proved via a reduction to the case of lin-
ear total deterministic mtts, and then to attribute grammars (which are deterministic by default), whose
output languages are LOG(CFL)-complete and therefore have DSPACE(log(n)2) membership test [10].
For nondeterministic tts, the complexity is achieved by a straightforward backtracking-based algorithm;
given the input trees and the output treet, it generates each possible output ofs by simulating the re-
cursive execution of state calls, while comparing witht. The following two facts imply the DSPACE(n)
complexity: (1) the depth of the recursion is at most the height ofs, and (2) to backtrack we only need to
remember for each state call the rule that was applied (which requires constant space). Note that neither
(1) nor (2) hold for mtts; the recursion depth can be exponential and the actual parameters passed to each
state call must also be remembered for backtracking.

Here we concentrate on a restricted class of mttcfs, namely,canonical, non-erasing, andpath-linear
mttcfs, which is exactly the class of mttcfs needed later in Section 4, to obtain the complexity result for
the output languages of the mtt-hierarchy. For a canonical mtt, we define a right-hand side of a rule to
benon-erasingif it is not in Y . A canonical mttcf isnon-erasingif the right-hand sides of all its rules
are non-erasing. An mttcf ispath-linearif a subtree of the form⟨q, xi⟩(· · · ⟨p, xj⟩(· · ·) · · ·) in its rules
impliesi ̸= j.

Making MTTCFs Total Deterministic Let M be a canonical, non-erasing, and path-linear mttcf.
It is easy to see that As noted in Section 2, we can always construct a total deterministic mttcfM ′

equivalent toM by simply taking⟨q, σ(· · ·)⟩(· · ·) → +(r1, · · · , +(rn, θ) · · ·) for {r1, . . . , rn} = Rq,σ.
Then,M ′ = (Q,Σ,∆, q0, R

′) can be seen as a total deterministicmttN = (Q,Σ,∆∪C, q0, R
′) whose

outputs are the choice trees denoting sets of output trees ofM . The canonicity and the non-erasure of
M implies that in any right-hand sider ∈ R′ and every positionν ∈ pos(r) with label(ν) ∈ Y , there
exists a proper prefixν ′ of ν with label(ν ′) ̸= +. Path-linearity is preserved fromM to M ′.

Compressed Representation Our approach is to represent the output choice treeτN (s) in a com-
pact (linear size) structure, and then compare it to the given output treet. Given a total deterministic mtt
N and an input trees ∈ TΣ , we can, in timeO(|s|), calculate a straight-line context-free tree grammar
(or SLG, a context-free tree grammar that has no recursion and generates exactly one output) of size
O(|s|) that generatesτN (s), using the idea of [19]. Rather than repeating the full construction of [19],
we here give a direct representation of the nodes ofτN (s).

4

Let N be a total, deterministic, non-erasing, and path-linear mtt with output alphabet∆ ∪ C and
let s be an input tree. LetE = {(r, ν) | q ∈ Q, σ ∈ Σ, r ∈ Rq,σ, ν ∈ pos(r)}. For a liste =
(r0, ν0) . . . (rn, νn) of elements ofE, we defineorig(e) (theorigin of e) asϵ.i0 . . . ik−1 wherek is the
smallest index satisfyinglabel(rk, νk) /∈ Q×X (or, letk = n+1 when all labels are inQ×X) andij is
the number such that⟨q, xij ⟩ = label(rj , νj) for someq. We calle well-formedif label(ri, νi) ∈ Q×X
for everyi < n, label(rn, νn) ∈ ∆ ∪ C, andorig(e) ∈ pos(s). Intuitively, e is a partial derivation or
a “call stack” of the mttN . Each node ofτN (s) can be represented by a well-formed list, which can
be stored inO(|s|) space because its length is at most1 + (height ofs) and the size of each element
depends only on the size of the fixed mtt, not on|s|. Note thate can represent many nodes inτN (s) if
the mtt is non-linear in the parameters. For instance, forMdexp from the Introduction and the input tree
s3 = a(a(a(e))), the list(r0, ϵ.1)(r1, ϵ.1)(r1, ϵ.1)(r2, ϵ.1) represents allb-nodes at depth 16 of the tree
τMdexp

(s3), of which there are28 many. The labelc-label(e) of the node represented bye is label(rn, νn).
The operationc-child(e, i) which calculates the representation of thei-th child of the node represented
by e is defined in terms of the following three operations. For a well-formed liste = (r0, ν0) . . . (rn, νn)
with rank(c-label(e)) = m, we definedowni(e) for 1 ≤ i ≤ m as (r0, ν0) . . . (rn, νn.i). For e =
(r0, ν0) . . . (rn, νn) such thatlabel(rn, νn) = yi ∈ Y , we definepop(e) = (r0, ν0) . . . (rn−1, νn−1.i).
For a liste = (r0, ν0) . . . (rn, νn) wherelabel(rn, νn) = ⟨q, xj⟩ ∈ Q × X, we defineexpand(e) =
(r0, ν0) . . . (rn, νn)(rn+1, ϵ) wherern+1 is the right-hand side of the unique⟨q, label(s, orig(e))⟩-rule.
Then, the operationc-child(e, i) is realized by the following algorithm: first applydowni to e, then
repeatedly applypopas long as possible, and then repeatedly applyexpandas long as possible. The non-
erasure ofN ensures that this yields a well-formed list; in the last step, whenexpandcannot be applied
to e = . . . (rn, νn), label(rn, νn) is obviously not inQ × X and by non-erasure is not inY , hence it is
in ∆ ∪ C. Since the length of a well-formed list is bounded by|s| andpop (andexpand, respectively)
always decreases (increases) the length of the list by one, each of them are executed at most|s| times
in the calculation ofc-child. Hence,c-child runs in polynomial time with respect to|s|. Similarly, the
representation of the root ofτN (s) is obtained in polynomial time by repeatedly applyingexpandas
long as possible toe0 = (r0, ϵ) wherer0 denotes the right-hand side of the unique⟨q0, label(s, ϵ)⟩-rule.
Note that a similar list representation is used in the proof of Theorem 3 in [4].

MATCH (e, v)
1: while label(e) = + do
2: e ← c-child(e, k) wherek = 1 or 2,

nondeterministically chosen
3: if c-label(e) ̸= label(v) then
4: return false
5: else ifrank(label(v)) = 0 then
6: return true
7: else
8: for i = 1 to rank(label(v)) do
9: if not MATCH(c-child(e, i), child(v, i)) then

10: return false
11: return true

Fig. 1.Matching Algorithm

Matching Algorithm with NP Time Complexity
Let t ∈ T∆. Figure 1 shows the nondeterministic algo-
rithm MATCH that decides, given a well-formed liste
and a nodev of t, whether the set of trees represented by
the choice tree ate contains the subtree oft rooted atv.
The operationsc-label andc-child are defined as above.
The operationslabel, rank, andchild are basic tree op-
erations, assumed to run in polynomial time with respect
to |t|. If we apply MATCH to the representations of the
root nodes ofτN (s) andv = ϵ, we can decide whether
(s, t) ∈ τM . Since this is the standard top-down recursive
comparison of two trees, the correctness of the algorithm
should be clear.

In each nondeterministic computation, MATCH is
called once for each node oft. In each call, the while-
loop iterates at mostc|s| times for a constantc. This is

due to non-erasure, i.e., for everyY -node in right-hand sides there exists a non-+ ancestor node. If
we onceexpanda list for obtainingc-child, we never seeY -nodes in right-hand sides (thus neverpop)
before seeing some∆-node. Thus, during the while-loop, the sequence of applied operations must be:
first pop’s anddown’s are applied, and thenexpandis applied (if any), and after that nopop is applied,
i.e., the only operations applied areexpandor down. In other words, it has to be in the regular set

5

(pop|down)∗(expand|down)∗. However, since the length of a well-formed list is at most|s|, we can con-
tinuouslypopwithout expanding at most|s| times, and the same forexpandwithout popping. Also, the
numbers of continuousdown’s are bounded by the height of the right-hand sides of the rules ofN . Thus,
the loop terminates after at most2 · (1 + the maximum height of right-hand sides ofN) · |s| iterations.
Altogether, the total running time is polynomial in|s| + |t|.

Linear Space Complexity The MATCH algorithm takesO((|s|+ log |t|)|t|) space if naively im-
plemented, because in the worst case the depth of recursion isO(|t|) and we have to remembere (which
costsO(|s|) space) andv (O(log(|t|)) space at least, depending on the tree node representation) in each
step of the recursion. However, note that the lists of nodes share common prefixes! Suppose the root
node is represented by(r0, ν0)(r1, ν1)(r2, ν2)(r3, ν3) and its child node is obtained by applyingdown1,
pop, andexpand. Then the child node is of the form(r0, ν0)(r1, ν1)(r2, ν

′
2)(r

′
3, ν

′
3), which shares the

first two elements with the root node representation. We show that if we store lists of nodes with com-
mon prefixes maximally shared, then, in the case of path-linear mtts, their space consumption becomes
O(|s|+ |t|). The idea of sharing lists resembles the proof of context-sensitivity of indexed languages [1].

We encode a list of well-formed lists as a tree, written in parenthesized notation on the tape. For
example, the list of three lists[ρ1ρ2ρ3, ρ1ρ2ρ4, ρ1ρ5ρ6] is encoded asρ1(ρ2(ρ3, ρ4), ρ5(ρ6)). Since the
number of parentheses is≤ 2n and that of commas is≤ n wheren denotes the number of nodes,
the size of this representation isO(n). When the function MATCH is recursively called, we add the
currente to the end of the list. The addition is represented as an addition to the rightmost path. As
an example, lete = ρ1ρ5ρ7ρ8. The common prefixρ1ρ5 with the current rightmost pathρ1ρ5ρ6 is
shared, and the suffixρ7ρ8 is added as the rightmost child of theρ5-node. Then, we have a new tree
ρ1(ρ2(ρ3, ρ4), ρ5(ρ6, ρ7(ρ8))). Removal of the last list, which happens when MATCH returns, is the
reverse operation of addition; the rightmost leaf and its ancestors that have only one descendant leaf
are removed. Note that, since by definition a well-formed list cannot be a prefix of any other well-
formed lists, each well-formed list always corresponds to a leaf node of the tree. It is straightforward to
implement these two operations in linear space and in polynomial time.

Let us consider what happens if we apply this encoding to the output of apath-linear mtt. In
the algorithm MATCH we only proceed downwards in the trees, i.e., the parametere′ to the recur-
sive calls is always obtained by applyingc-child several times to the previous parametere. Thus,
the lists [e0, e1, . . . , en] of node representations we have to store during the recursive computation
always satisfy the relationej ∈ c-child+(ei) for every i < j. Let e = (r0, ν0) . . . (rm, νm) and
e′ = (r′0, ν

′
0) . . . (r′m, ν ′

m) be proper prefixes of different elements in the same list satisfying the con-
dition (here we assume thate is taken from the element preceding the one wheree′ is taken). Then,
orig(e) = orig(e′) only if e = e′. This can be proved by contradiction. Supposeorig(e) = orig(e′)
ande ̸= e′, and thej-th elements are the first difference betweene ande′. Recall thate′ is a prefix of
a well-formed list obtained by repeatedly applyingc-child to another well-formed list, of whiche is a
prefix. Then it must be the case thatrj = r′j (by definition ofexpand, rj andr′j are uniquely determined
from (r0, ν0) . . . (rj−1, νj−1) and(r′0, ν

′
0) . . . (r′j−1, ν

′
j−1), which are equal) andνj is a proper prefix of

ν ′
j . However, due to path-linearity, the input variable atνj andν ′

j must be different, which contradicts
orig(e) = orig(e′). Therefore, we can associate a unique node inpos(s) with each proper prefix of the
lists, which means that the number of distinct proper prefixes is at most|s|. Similarly, it can be shown
that adding only to the rightmost path is sufficient for maximally sharing all common prefixes. Suppose
not, then there must be in the list three nodes of the formse1 = e.(r, ν).e′1, e2 = e.(r, ν ′).e′2, and
e3 = e.(r, ν).e′3 with ν ̸= ν ′ in this order. Note that if this happened, then the prefixe.(r, ν) would not
be shared by the rightmost addition. However,e2 ∈ c-child+(e1) implies thatν is a proper prefix ofν ′,
and bye3 ∈ c-child+(e2), ν ′ is a proper prefix ofν, which is a contradiction. Hence, the number of
nodes except leaves in the tree encoding equals the number of distinct proper prefixes, which is at most
|s|. We can bound the number of leaves by|t|, the maximum depth of the recursion. So, the size of the
tree encoding of a list of nodes isO(|s| + |t|). We can easily remember the whole list ofv’s in O(|t|)

6

space. Since in the lists[v1, . . . , vn], vi+1 is always a child node ofvi, we only need to remember the
child number for each node. For example, the list[ϵ, ϵ.2, ϵ.2.1] can be encoded as[ϵ, 2, 1]. Thus, we only
need≤ height(t) many numbers, each of which is between 1 and the maximal rank of symbols in∆,
which is a constant.

Theorem 1. Let M be a canonical, non-erasing, and path-linear mttcf. There effectively exists a non-
deterministic Turing Machine which, given anys andt as input, determines whether or not(s, t) ∈ τM

in O(|s| + |t|) space and in polynomial time with respect to|s| + |t|.

4 Bounding the Size of Intermediate Trees

As explained in the Introduction, the key idea for obtaining linear-size complexity for compositions of
mtts is to bound the size of all intermediate input trees, and this is achieved by putting the mtts into
“non-deleting” forms. In the same way as for total deterministic mtts [17], we classify the “deletion” in
mtts into three categories –erasing, input-deletion, andskipping(a similar classification without erasing,
which is a specific use of parameters, is also used in the case of nondeterministic tts [3]). The resolution
of each kind of deletion, however, requires several new techniques and considerations compared to
previous work, due to the interaction of nondeterminism and parameters. In the rest of this paper, we
first explain how we eliminate each kind of deletion, and then show the main results.

4.1 Erasing

We first consider “erasing” rules – rules of the form⟨q, σ(· · ·)⟩(y1, . . . , ym) → yi, as defined in Sec-
tion 3. An application of such a rule consumes one inputσ-node without producing any new output
symbols; hence it is deleting a part of the input. Note that if the rank ofσ is non-zero, then a rule as
above is at the same time also input-deleting, which is handled in Section 4.2. In the case of total deter-
ministic mtts, “non-erasing” is a normal form, i.e., for every total deterministic mtt there is an equivalent
one without erasing rules. Unfortunately, we could not find such a normal form for nondeterministic mtts
with OI semantics. Note that for OI context-free tree grammars (essentially mtts without input: think of
⟨q, xi⟩ as a nonterminalNq, or equivalently, think of macro grammars [13] or indexed grammars [1],
with trees instead of strings in right-hand sides), it has been shown [16] that there isno non-erasing
normal form: erasing grammars are strictly more powerful than non-erasing ones. To see where the
difficulty arises, let us consider the following example of a deterministic mtt and the input treea(b, b):

⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(⟨q3, x2⟩(B, C)) ⟨q2, b⟩(y1) → A(y1, y1) ⟨q3, b⟩(y1, y2) → y1.

The ⟨q3, b⟩-rule is erasing. The basic idea of obtaining the non-erasing normal form for total deter-
ministic mtts is to apply all erasing rules inline where they are called in a right-hand side. That is, we
remove the erasing rule and modify theq1 rule to⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(B) (plus a look-ahead check
“x2 = b”). This approach does not work properly under OI-nondeterminism. Let us suppose the case
when the⟨q3, b⟩-rules are nondeterministic as follows:

⟨q3, b⟩(y1, y2) → y1 ⟨q3, b⟩(y1, y2) → y2 ⟨q3, b⟩(y1, y2) → A(y1, y2).

Note that theq2 rule duplicates its argument⟨q3, x2⟩(B, C) beforecallingq3, and evaluates the two copies
independently. Thus,⟨q1, a(b, b)⟩↓ contains all the nine treesA(t1, t2) with t1, t2 ∈ {B, C, A(B, C)}. How-
ever, the inline application of erasing rules now gives:⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(B), ⟨q1, a(x1, x2)⟩ →
⟨q2, x1⟩(C), and⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(A(B, C)), which implies copyingafter evaluation of theq3

call. So, in order to perform the expansion correctly, we need some way to preserve the nondeterministic
choice after the expansion. For this purpose, we move from normal mtts tomtts with choice and failure.
The example above can be represented by an mttcf rule⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(+(B, +(C, A(B, C)))),
for instance. We will show that every mtt can be simulated by a non-erasing mttcf.

7

Lemma 2. LetM be a mtt. There exists effectively a linear ttE and a canonical mttcfM ′ such thatM ′

is non-erasing andτE ; τM ′ = τM . Path-linearity is preserved fromM to M ′.

Proof. The idea is, we first predict all erasing beforehand and annotate each input node by the informa-
tion of erasing, by using a preprocessing linear tt. Then we replace all erasing state calls (e.g.,⟨q, x1⟩(u1)
with the rule⟨q, . . .⟩(y1) → y1) in the right-hand sides of rules with the result of the erasing call (e.g.,
u1). Note that we have to deal with nondeterminism. Suppose we have two rules⟨q, σ⟩(y1, y2) → y1

and⟨q, σ⟩(y1, y2) → y2 and a state call⟨q, x1⟩(u1, u2) in a right-hand side. In order to preserve the
nondeterminism, we replace the state call by+(u1, u2).

Let M = (Q,Σ,∆, q0, R). We defineE to be a nondeterministic linear tt with the set of states
P = [Q → 2{1,...,n}] ∪ {p0} (functions fromQ to 2{1,...,n} wheren is the maximum rank of the states
of Q, and one distinct statep0, which is the initial state), the input alphabetΣ, the output alphabet
Σp = {(σ, p1, . . . , pk)(k) | σ(k) ∈ Σ, pi ∈ P}, and the following rules for everyσ(k) ∈ Σ and
p1, . . . , pk ∈ [Q → 2{1,...,n}]: ⟨p, σ(x1, . . . , xk)⟩ → (σ, p1, . . . , pk)(⟨p1, x1⟩, . . . , ⟨pk, xk⟩) wherep ∈
{p0, (q 7→

⋃
{f(r) | ⟨q, . . .⟩(. . .) → r ∈ R})} with f recursively defined as follows:f(yi) = {i},

f(δ(. . .)) = ∅, andf(⟨q′, xj⟩(r1, . . . , rm)) =
⋃
{f(ri) | i ∈ pj(q′)}. The transducerE modifies the

labelσ(k) of each input node into the form(σ(k), p1, . . . , pk). The annotated informationpi intuitively
means “if a stateq of M is applied to thei-th child of the node, it will erase and return directly thee-th
parameter fore ∈ pi(q)”. If pi(q) = ∅ then no erasing will happen. The rule ofE is naturally understood
if it is read from right to left, as a bottom-up translation. Formally speaking, the following claim holds.
It is easily proved by induction on the structure ofs.

Claim. (1) For eachs ∈ TΣ andq ∈ Q(m), there is a uniquep ∈ P \ {p0} such that⟨p, s⟩↓E ̸= ∅, and
e ∈ p(q) if and only if ye ∈ ⟨q, s⟩(y1, . . . , ym)↓M . (2) Let us denote by[s] suchp determined bys. The
outputs′ ∈ τE(s) is unique. Forb ∈ pos(s) = pos(s′), label(s′, b) = (label(s, b), [s|b.1], . . . , [s|b.k]).

We next define a non-erasing mttcf, using the annotation added byE. LetM ′ = (Q,Σp,∆, q0, R
′) with

R′ = {⟨q, (σ, p1, . . . , pk)(x1, . . . , xk)⟩(y1, . . . , ym) → r′ | r ∈ Rq,σ, r′ ∈ ne(r), r′ /∈ Y } where the set
ne(r) is defined inductively by

ne(yj) = {yj}
ne(δ(r1, . . . , rl)) = {δ(r′1, . . . , r′l) | r′i ∈ ne(ri)}

ne(⟨q′, xj⟩(r1, . . . , rl)) =
⋃

{ne(ri) | i ∈ pj(q′)} ∪ {⟨q′, xj⟩(nep(r1), . . . , nep(rl))},

andnepdefined as follows:nep(yj) = yj , nep(δ(r1, . . . , rl)) = δ(nep(r1), . . . , nep(rl)), andnep(⟨q′,
xj⟩(r1, . . . , rl)) = +(u1, +(u2, . . . , +(uz, θ) · · ·)) where{u1, . . . , uz} = ne(⟨q′, xj⟩(r1, . . . , rl)). In-
tuitively, neadds rules by replacing each top-level state calls with its argument if the state call is erasing
according to the annotationpj ’s. The other functionnepdoes essentially the same thing for non top-
level positions, but by replacing erasing state calls with+ choices instead of adding rules to preserve the
OI-nondeterminism. It should be clear from the definition thatM ′ is canonical and non-erasing. Since
neonly returns a set of subtrees of a right-hand side,neandnepnever add any new nesting among state
calls, and thusM ′ is path-linear ifM is.

The correctness of this construction is proved by induction on the structure of the input trees, by
showing that ifui↓M = u′

i↓M ′ then⟨q, s⟩(u1, . . . , uk)↓M = ⟨q, τE(s)⟩(u′
1, . . . , u

′
k)↓M ′ ∪

⋃
{ui↓M |

yi ∈ ⟨q, s⟩(y1, . . . , yk)↓M}. Applying this to the initial stateq0 proves the equationτM = τE ; τM ′ . ⊓⊔

4.2 Input-Deletion

The second kind of deletion we investigate is “input-deletion”. For instance, if there is the rule⟨q0, a(x1,
x2)⟩ → A(⟨q0, x2⟩) for the initial stateq0 and the input is of the forma(t1, t2), then the subtreet1 is
never used for the output calculation. Although total deterministic mtts can be madenondeleting(i.e., to

8

always traverse all subtrees ofeveryinput tree) by preprocessing with a deleting linear tt [17], it becomes
more difficult for nondeterministic mtts. This is because of the nondeterminism, which means that there
can be more than one possible computation for a single input tree, and we cannot avoid the situation that
one of the computations traverses all subtrees while others do not. Consider the inputa(b, c(t1, t2)) and
the following set of rules:

⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(⟨q3, x2⟩) ⟨q3, c(x1, x2)⟩ → ⟨q4, x1⟩
⟨q2, b⟩(y1) → A(y1, y1) ⟨q3, c(x1, x2)⟩ → ⟨q4, x2⟩

Note that the state call forq3 is duplicated by OI semantics; even though the mtt is linear. There are three
possibilities with respect to input-deletion: eithert1 is deleted (the case all duplicatedq3 calls choose
the secondq3-rule), t2 is deleted (the case all choose the first rule), or no deletion occurs. We can still
construct a linear tt that does preliminarily deletion, in such a way that it nondeterministically returns
a(b, c2(t2)), a(b, c1(t1)), ora(b, c12(t1, t2)) (the subscript onc identifies the non-deleted children). We
can also modify the mtt as follows

⟨q3, c1(x1)⟩ → ⟨q4, x1⟩ ⟨q3, c12(x1, x2)⟩ → ⟨q4, x1⟩
⟨q3, c2(x1)⟩ → ⟨q4, x1⟩ ⟨q3, c12(x1, x2)⟩ → ⟨q4, x2⟩

in which rules using the “deleted” input subtrees are removed. Then, for the former two “deleted” in-
stances of the input trees, the mtt is successfully non-input-deleting. But sadly, this mtt still may delete
for the last instance of the input tree, when all duplicated⟨q3, c12⟩ calls choose the same rule. The
point is, under nondeterminism, we cannot argue the input-deleting property of eachtransducer. Rather,
we can only argue whether eachcomputationis input-deleting or not. This is a weaker version of the
nondeletion condition used for total deterministic mtts, but it is sufficient for our purpose.

In order to speak more formally, here we define the notion ofcomputation tree(following the method
of [3], but extending it to deal with accumulating parameters). For any finite setP , we define the ranked
alphabetP = {p(1) | p ∈ P}. LetM = (Q,Σ,∆, q0, R) be an mttcf ands ∈ TΣ . The setCOMP(M, s)
is the set of treescomp⟨q0, ϵ⟩↓ ⊆ T∆∪pos(s) calledcomputation trees(or sometimes, simplycomputa-

tions). The derivationcomp⟨q0, ϵ⟩↓ is carried out under the following set of rewriting rules with outside-
in derivation:+(u1, u2) → u1, +(u1, u2) → u2, andcomp⟨q, ν⟩(y⃗) → fν(r) for q ∈ Q, ν ∈ pos(s),
r ∈ Rq,label(s,p) wherefν is inductively defined as follows:

fν(yi) = yi

fν(δ(r1, . . . , rk)) = ν(δ(fν(r1), · · · , fν(rk))
fν(⟨q′, xj⟩(r1, . . . , rk)) = comp⟨q′, ν.j⟩(fν(r1), · · · , fν(rk))).

Intuitively, COMP(M, s) is the set of trees⟨q0, s⟩↓ where the parent of each∆-node is a monadic
node labeled by the position in the input trees that generated the∆-node. For example, the output tree
ϵ(α(ϵ.1(β), ϵ.2(γ(ϵ(δ))))) means that theα andδ nodes are generated at the root node of the input tree,
and theβ andγ nodes are generated at the first and the second child of the root node, respectively. Let
delposbe the translation that removes allν ∈ pos(s) nodes. It is easily proved by induction on the
number of derivation steps thatdelpos(COMP(M, s)) = ⟨q0, s⟩↓M , i.e., if we remove allpos(s) nodes
from a computation tree, we obtain an output tree of the original mtt.

We say that a computation treeu is non-input-deletingif for every leaf positionν ∈ pos(s), there is
at least one node inu labeled byν. Note that the rewriting rules ofcompcorresponding to erasing rules
do not generate anypos(s) node. Thus, non-input-deletion implies that not only some state is applied to
every leaf, but also anon-erasingrule of some state must be applied.

9

Lemma 3. LetM be a canonical non-erasing mttcf. There effectively exists a linear ttI and a canonical
non-erasing mttcfM ′ such thatτM = τI ; τM ′ , and for every input-output pair(s, t) ∈ τM , there exists
a trees′ and a computation treeu ∈ COMP(M ′, s′) such that(s, s′) ∈ τI , t = delpos(u), andu is
non-input-deleting. Also,M ′ is path-linear ifM is.

Proof. Let M = (Q,Σ,∆, q0, R). We defineI as({d}, Σ,Σ′, d, U) whereΣ′ = {(σ, i1, . . . , im)(k) |
σ(k) ∈ Σ, 1 ≤ i1 < · · · < im ≤ k} and

U = {⟨d, σ(x1, . . . , xk)⟩ → (σ, i1, . . . , im)(⟨d, xi1⟩, . . . , ⟨d, xim⟩) | (σ, i1, . . . , im) ∈ Σ′}.

The transducerI reads the input tree and nondeterministically deletes subtrees while encoding the num-
bers of the undeleted subtrees in the current label. We define the mttcfM ′ as(Q,Σ′,∆, q0, R

′) where

R′ = {⟨q, (σ, i1, . . . , im)(x1, . . . , xm)⟩(y⃗) → r′

| r ∈ Rq,σ such that for all top-level calls⟨q′, xp⟩ in r, p ∈ {i1, . . . , im}, andr′ is obtained by

replacing⟨q′, xij ⟩ in r with ⟨q′, xj⟩ and⟨q′, xp⟩ with θ for p /∈ {i1, . . . , im}}.

The transducerM ′ has basically the same rules asM , except that state calls on ‘deleted’ children are
replaced byθ (or, if it is at the top-level then the rule is removed, to preserve canonicity). It should be
easy to see thatM ′ is canonical and non-erasing, and preserves the path-linearity ofM .

The correctness of this construction is proved as follows. Note that there is the natural one-to-one
correspondence between the set of⟨q, σ⟩-rules ofM and the set of⟨q, (σ, i1, . . . , im)⟩-rules ofM ′. First,
we can prove (1)τM ′(τI(s)) ⊆ τM (s) by induction on the number of derivation steps inM ′, showing
that for each derivation step inM ′ we can always apply the corresponding rewriting rule inM and obtain
the corresponding (i.e., differs only at state calls on ‘deleted’ nodes that are replaced withθ) sentential
form, which proves that we can obtain the same final output asτI ; τM ′ by τM . Next, we show that (2) for
anyu ∈ COMP(M, s), there exists an equivalent non-input-deleting computation. Lets′ be the minimal
substructure ofs that contains all nodes and their ancestors contained inu. Thens′ ∈ τI(s) assuming
thats′ is appropriately relabeled fromΣ to Σ′ as the transducerI does, and we can similarly prove that
we can obtain a computationu′ ∈ COMP(M ′, s′) corresponding tou by induction on the number of
derivation steps (here, non-erasure assures that we can always choose the ‘corresponding’ rule; if a state
call comp⟨q, p⟩ is rewritten in the derivation ofM , then a node labeledp′ must be generated for some
descendantp′ of p, and thus the node corresponding top′ and its ancestorp are kept not removed ins′).
Then, by the construction we havedelpos(u) = delpos(u′), and sinces′ is the minimal substructure of
s that contains all nodes occurred inu, all leaf nodes ofs′ occur inu′, which means thatu′ is non-input-
deleting. Note that (2) impliesτM (s) ⊆ τM ′(τI(s)). Therefore, together with (1), we haveτI ; τM ′ = τM

as desired. ⊓⊔

4.3 Skipping

The third and last kind of deletion is “skipping”. A computation treeu is skippingif there is a node
ν ∈ pos(s) labeled by a rank-1 symbol such that no node inu is labeledν. For a canonical, non-erasing,
and path-linear mttcf, skipping is caused by either one of the following two forms of rules. One type is
of the form⟨q, σ(x1)⟩(y1, . . . , ym) → ⟨q′, x1⟩(u1, . . . , uv) whereui ∈ TY ∪C , and such rules are called
skipping. The others are rules which are not skipping but are of the form⟨q, σ(x1)⟩(y1, . . . , ym) →
⟨q′, x1⟩(u1, . . . , uv) whereui ∈ T∆∪Y ∪C , and such rules are calledquasi-skipping. Note that, since the
mttcf is path-linear, there are no nested state calls in right-hand sides of rules for input symbols of rank 1.
Also note that if the root node of the right-hand side of a rule is not a state call, then it must be a∆-node
since the mttcf is canonical and non-erasing. So an application of such a rule generates a∆-node and
thus aν ∈ pos(s) node for the current input node. Therefore, it is sufficient to consider only skipping
and quasi-skipping rules.

10

Quasi-skipping rules may cause skipping computations due to parameter deletion: for example, con-
sider the quasi-skipping rule⟨q, σ(x1)⟩(y1) → ⟨q′, x1⟩(δ(y1)); if there is aq′-rule with a right-hand side
not usingy1, then theσ-node may be skipped. For total deterministic mtts [17], there is a “parameter
non-deleting” normal form, i.e., every total deterministic mtt is equivalent to one that uses all parameters
in the right-hand sides of its rules, and thus only skipping rules (without choice nodes) were considered
there. Unfortunately, as for non-erasure, we could not find such a normal form for nondeterministic
mtts. Instead, we add some auxiliary skipping rules to mttcfs, so that we only need to consider skipping
rules. Note that quasi-skipping rules cause skipping computations only when parameters are deleted.
The idea is, if a parameter in some rule is never used for a computation, then replacing the parameter
by a failure symbolθ does not change the translation, and moreover, such replacement changes a quasi-
skipping rule into a skipping rule. Thus we may assume that all skipping computations are caused by
skipping rules, and hence we can straightforwardly extend the proofs for total deterministic mtts [17]
and nondeterministic tts [3].

Lemma 4. LetM be an canonical, non-erasing, and path-linear mttcf. There exists effectively a linear
tt S and a canonical, non-erasing, and path-linear mttcfM ′ such that (1)τS ; τM ′ = τM and (2) for
every input trees and non-input-deleting computation treeu ∈ COMP(M, s), there exists a trees′ and
a computation treeu′ such thats′ ∈ τS(s), u′ ∈ COMP(M ′, s′), delpos(u′) = delpos(u), andu′ is both
non-input-deleting and non-skipping.

Proof. Let M = (Q,Σ,∆, q0, R). We defineN = (Q,Σ,∆, q0, R ∪ R) with:

R ={⟨q, σ(x1)⟩(y⃗) → r′ | q ∈ Q, σ ∈ Σ(1), r ∈ Rq,σ, r is quasi-skipping,

andr′ is obtained by replacing all subtrees ofr of the formδ(· · ·), δ ∈ ∆ by θ}.

ObviouslyτM ⊆ τN , and it should be also clear thatτN ⊆ τM , because in each derivation ofN , we can
replace every application ofR rules by the corresponding rules inR.

Furthermore, we can similarly prove that for any non-input-deleting computationu of COMP(N, s)
andU the set of rank-1 nodes ofs that are skipped inu, there is a derivation that derivesu and does not
apply quasi-skipping rules to anyp ∈ U . Suppose a quasi-skipping ruleρ is applied to a nodep ∈ U in a
derivation ofu. Then, since all∆-nodes inρ are skipped inu (that means, they never come to top-level
position during the derivation), we can always replace the application with the corresponding skipping
rule in R (recall that it is obtained by replacing all∆-nodes byθ) without changing the final output
computationu. Thus, forN , without loss of generality we may assume that all skipping computation
are caused by skipping rules.

We defineS as(H,Σ,Σ × H,h0, U) whereH =
⋃

m[Q(m) →
⋃

n P(Q(n) × P({1, . . . ,m})n)]
with P denoting power set,h0 = q 7→ {(q, {1}, {2}, . . . , {rank(q)})}, and

U = {⟨h, σ(x1, . . . , xk)⟩ → (σ, h)(⟨h0, x1⟩, . . . , ⟨h0, xk⟩) | σ ∈ Σ, h ∈ H}
∪ {⟨h, σ(x1)⟩ → ⟨h′

σ, x1⟩ | σ ∈ Σ(1), h ∈ H}}

whereh′
σ is the function

h′
σ = q 7→ {(q′′,f(r1, ι⃗), . . . , f(rl, ι⃗)}) |

(q′, ι1, . . . , ιn) ∈ h(q),

⟨q′, σ(x1)⟩(y1, . . . , yn) → ⟨q′′, x1⟩(r1, . . . , rl) ∈ R ∪ R, ri ∈ TY ∪C}

with f inductively defined as:f(yj , ι1, . . . , ιm) = ιj , f(θ, ι1, . . . , ιm) = ∅, andf(+(r1, r2), ι1, . . . , ιm)
= f(r1, ι1, . . . , ιm) ∪ f(r2, ι1, . . . , ιm).

11

The transducerS reads the input tree and nondeterministically deletes sequences of rank-1 nodes,
while encoding the possible way to pass parameters by skipping rules. Such information on parame-
ter passing is encoded as a functionh ∈ H. For example, one possible output ofS from the input
a(b(c(· · ·)))) is (c, h)(· · ·), in which a andb nodes are deleted and the information is encoded inh.
Intuitive meaning of eachh is, “if (q′, ι1, . . . , ιn) ∈ h(q), then when a stateq were applied to the root
of the deleted sequence of rank-1 nodes with parameterst1, . . . , tm, thenN would have skipped the
sequence, and reached a stateq′ with parametersti1 , . . . tin , ij ∈ ιj for 1 ≤ j ≤ n”. The initial stateh0

means that “no node was skipped so far”.
We then defineM ′ as(Q,Σ × H,∆, q0, R

′) where

R′ = {⟨q,(σ, h)(x1, . . . , xk)⟩(y1, . . . , ym) → r[y1/iset(ι1), · · · , yn/iset(ιn)]
| (q′, ι1, . . . , ιn) ∈ h(q), r ∈ Rq′,σ}

with iset({i1, . . . , ip}) = +(yi1 , +(yi2 , · · · , +(yip , θ) · · ·)). SinceM is canonical, non-erasing, and
path-linear, clearly so isM ′.

It should be easy to verify that the definition ofM ′ andS follow the above intuition. The composition
τS ; τM ′ = τM and the existence of a non-skipping computation can be proved similarly as for Lemma 3.
Namely, to construct a non-skipping computationu′ from a computationu ∈ COMP(M, s), we take the
intermediate trees′ as the tree obtained froms by deleting all rank-1 nodes not contained inu. Then by
induction on the number of derivation steps, we can construct an equivalent non-skipping computation
u′ ∈ COMP(M ′, s′). ⊓⊔

4.4 Counting the Number

Lemma 5. Let M = (Q,Σ,∆, q0, R) be an mttcf,s an input tree, andu a non-input-deleting, non-
skipping computation tree in COMP(M, s) with delpos(u) = t. Then|s| ≤ 2|t|.

Proof. Sinceu is non-input-deleting and non-skipping, for all nodesν ∈ pos(s) of rank zero or one,
there exists a node labeledν in u, and by definition of computation trees, its child node is labeled by a
symbol in∆. Thus,leaves(s) + rank1nodes(s) ≤ |t| whereleaves(s) is the number of leaf nodes ofs
andrank1nodes(s) is the number of nodes ofs labeled by rank-1 symbols. Since|s| ≤ 2 × leaves(s) +
rank1nodes(s) (this holds for any trees), we have|s| ≤ 2|t| as desired. ⊓⊔

5 Complexity of Compositions of MTTs

Lemma 6. LetK ∈ {NSPACE(n), NP} andF a class ofK languages effectively closed underLT. Then
LMT(F) andT(F) are also inK.

Proof. Let M be a linear mtt or a tt. Note that in both cases,M is path-linear. First, we make it non-
erasing; by Lemma 2, there exist a linear ttE and a canonical, non-erasing, and path-linear mttcfM1

such thatτE ; τM1 = τM . Next, we make each computation non-input-deleting; by Lemma 3, there
exist a linear ttI and a canonical, non-erasing, and path-linear mttcfM2 such thatτI ; τM2 = τM1 .
For every(s1, t) ∈ τM1 , there is an intermediate trees2 and a non-input-deleting computationu ∈
COMP(M2, s2) such that(s1, s2) ∈ τI and delpos(u) = t. Then, we make each computation non-
skipping; by Lemma 4, there exist a linear ttS and a canonical, non-erasing, and path-linear mttcfM3

such thatτS ; τM3 = τM2 . For every non-input-deleting computationu ∈ COMP(M2, s2), there is an
intermediate trees3 and a non-input-deleting, non-skipping computationu′ ∈ COMP(M3, s3) such that
(s2, s3) ∈ τS anddelpos(u′) = delpos(u). Altogether, we haveτE ; τI ; τS ; τM3 = τM , and for every
(s, t) ∈ τM there exists a trees3 such that(s, s3) ∈ τE ; τI ; τS and a non-input-deleting, non-skipping
computationu′ ∈ COMP(M3, s3) such thatdelpos(u′) = t. By Lemma 5,|s3| ≤ 2|t|.

12

Let L be a language inF . To check whethert ∈ τM (L), we nondeterministically generate every tree
s′ of size|s′| ≤ 2|t| and for each of them, test whether(s′, t) ∈ τM3 ands′ ∈ (τE ; τI ; τS)(L). By The-
orem 1, the former test can be done nondeterministically inO(|s′|+ |t|) = O(|t|) space and polynomial
time with respect to|t|. By the assumption thatF is closed under LT, the language(τE ; τI ; τS)(L) is
also inK. Thus the latter test is in complexityK with respect to|s′| = O(|t|). ⊓⊔

Note that, for T, the same decomposition as shown in the first paragraph of the proof of Lemma 6 is
already known (Lemma 1 of [3]). And since by Theorem 1 of [3] the translation membership of a single
tt is in DSPACE(n), for T, the above result also holds forK = DSPACE(n).

Lemma 7. LetK ∈ {NSPACE(n), NP} andF a class ofK languages effectively closed underLT. Then
MT(F) is also inK and effectively closed underLT.

Proof. The closure under LT immediately follows from the following known results: MT= DtMT ; T
(Corollary 6.12 of [12]), T; LT = DtQREL; T (Lemma 2.11 of [9]), and DtMT ; DtQREL ⊆ DtMT
(Lemma 11 of [11]). By Lemma 2.11 of [9] and Theorem 2.9 of [8], T; LT ⊆ LT ; T, which implies that
T(F) is also closed under LT. By the decomposition MT= DtT ; LMT (page 138 of [12]), MT(F) ⊆
LMT(T(F)). By applying Lemma 6 twice, LMT(T(F)) is in K. ⊓⊔

Theorem 8. MT∗(REGT) ⊆ NSPACE(n) ∩ NP-complete.

Proof. The class REGT is closed under LT (Propositions 16.5 and 20.2 of [15]) and is in NSPACE(n)∩
NP (see, e.g., [15]). By induction onk ≥ 1 it follows from Lemma 7 that MTk(REGT) is in NSPACE(n)
and NP. As noted in the Introduction, NP-hardness follows from [23] and the fact that the indexed
languages, which are equivalent to the yields of context-free-tree languages under OI-derivation, are in
MT2(REGT). ⊓⊔

Although we only have considered outside-in evaluation order up to here, the previous result holds for
compositions of mtts ininside-outevaluation order. This is because MT∗

IO = MT∗ by Theorem 7.3
of [12], where MTIO denotes the class of translations realized by mtts in inside-out evaluation order.

Corollary 9. MT∗
IO(REGT) ⊆ NSPACE(n) ∩ NP-complete.

The yield translation, which translates a tree into its string of leaf labels from left to right (seen as a
monadic tree), is in DtMT. Therefore the output string languagesyield(MT∗(REGT)) of mtts are also in
the same complexity class as Theorem 8. Especially, this class contains the IO- and OI- hierarchies [6].
Note that the IO-hierarchy is in DtMT∗(REGT) and hence in DSPACE(n) by Corollary 17 of [17]. Since
the first level of the OI-hierarchy are the indexed languages [13] which are NP-complete [23], we obtain
the following.

Corollary 10. The OI-hierarchy is inNSPACE(n) ∩ NP-complete.

AcknowledgmentThis work was partly supported by the Japan Society for the Promotion of Science.

References

1. A. V. Aho. Indexed grammars—an extension of context-free grammars.J. ACM, 15:647–671, 1968.
2. P. R. J. Asveld. Time and space complexity of inside-out macro languages.Int. J. Comp. Math., 10:3–14, 1981.
3. B. S. Baker. Generalized syntax directed translation, tree transducers, and linear space.SIAM J. Comp., 7:376–391, 1978.
4. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document trees.Inf. Syst., 33:456–474,

2008.
5. B. Courcelle. Monadic second-order definable graph transductions: A survey.Th. Comp. Sc., 126:53–75, 1994.
6. W. Damm. The IO- and OI-hierarchies.Th. Comp. Sc., 20:95–207, 1982.
7. F. Drewes and J. Engelfriet. Decidability of the finiteness of ranges of tree transductions.Inf. and Comp., 145:1–50, 1998.
8. J. Engelfriet. Bottom-up and top-down tree transformations – a comparison.Math. Sys. Th., 9:198–231, 1975.

13

9. J. Engelfriet. Top-down tree transducers with regular look-ahead.Math. Sys. Th., 10:289–303, 1977.
10. J. Engelfriet. The complexity of languages generated by attribute grammars.SIAM J. Comp., 15:70–86, 1986.
11. J. Engelfriet and S. Maneth. Output string languages of compositions of deterministic macro tree transducers.J. Comp.

Sys. Sci., 64:350–395, 2002.
12. J. Engelfriet and H. Vogler. Macro tree transducers.J. Comp. Sys. Sci., 31:71–146, 1985.
13. M. J. Fischer.Grammars with Macro-Like Productions. PhD thesis, Harvard University, Cambridge, 1968.
14. Z. F̈ulöp and H. Vogler.Syntax-Directed Semantics: Formal Models Based on Tree Transducers. Springer-Verlag, 1998.
15. F. Ǵecseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,Handbook of Formal Languages,

Vol 3: Beyond Words, pages 1–68. Springer-Verlag, 1997.
16. B. Leguy. Grammars without erasing rules. the OI case. InTrees in Algebra and Programming, 1981.
17. S. Maneth. The complexity of compositions of deterministic tree transducers. InFSTTCS, 2002.
18. S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree transducers. InPODS, 2005.
19. S. Maneth and G. Busatto. Tree transducers and tree compressions. InFoSSaCS, 2004.
20. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. InPODS, 2000.
21. T. Perst and H. Seidl. Macro forest transducers.Information Processing Letters, 89:141–149, 2004.
22. W. C. Rounds. Mappings and grammars on trees.Math. Sys. Th., 4:257–287, 1970.
23. W. C. Rounds. Complexity of recognition in intermediate-level languages. InFOCS, 1973.
24. J. W. Thatcher. Generalized2 sequential machine maps.J. Comp. Sys. Sci., 4:339–367, 1970.

14

