
COMPLEXITY AND EXPRESSIVENESS OF MODELS

OF XML TRANSLATIONS

The University of Tokyo

December 17, 2008

Kazuhiro Inaba

ABSTRACT

XML has become widely used in computer industry, and the importance of static analysis

and verification of applications manipulating XML documents is increasing. For analyzing

or proving any properties on XML manipulating programs, it is essential to have some model

with theoretically well-defined semantics. After a long history of researches on models of tree-

to-tree translations, a recent trend is to regard macro tree transducers (mtts) as a standard

model for XML manipulation. Mtts are known to cover tree translations expressible by

other models such as attributed tree transducers, MSO-definable tree translations, or pebble

tree transducers, and the high expressiveness allows representing a vast range of practical

XML translations. Yet, they ensure various good properties such as exact typechecking,

streaming, decidable emptiness, and so on. Nevertheless, mtts still lack some properties

desired for modeling XML translations. In particular, (1) mtts have poor closure properties

on composition and (2) computational complexities for many problems on mtts are still

unknown. A consequence of the first point is that, for example, an mtt composed with even

a very simple pre- or post- tree translation cannot be represented by a single mtt. The lack

of the compositionality implies difficulty of modular modeling; even if we could construct a

model for each smaller subpart of a program separately, it is in general impossible to compose

them up to obtain the model for the whole program. For the second point, the decidability is

proved for many problems on mtts or their compositions, while the complexities and concrete

algorithms solving the problems have been left open. This makes it difficult to estimate

the computational hardness of each verification problem. One example of such a case is the

membership problem of output languages, i.e., the problem determining whether a tree is a

valid output with respect to the translation and a given input regular type. Although the

problem is essential for, e.g., verifying that a program never generates ‘wrong’ outputs, its

complexity had not been analyzed.

The goal of the thesis is to improve these shortcomings of mtts. First, to address the

compositionality issue, a new model of tree-to-tree translation called multi-return macro tree

transducer (mr-mtt) is introduced. As its name shows, an mr-mtt is an mtt extended with

the capability of returning multiple tree fragments simultaneously, in contrast to an mtt that

can return only one. We show that mr-mtts are closed under pre- and post- compositions

with arbitrary deterministic total top-down tree transducers, and therefore enable modular

modeling of tree-translations. We also show that mr-mtts are strictly more expressive than

mtts, which at the same time formally proves as a corollary the folklore conjecture that mtts

are not closed under post-compositions with top-down tree transducers.

Second, the thesis investigates complexity on compositions of mtts. We show that the

data-complexity of the membership problem of output languages is in the class DSPACE(n)

and is NP-complete. The crucial lemma of the proof is that any composition of finite number

of mtts can be transformed into so-called garbage-free forms, meaning that any subtrees of

intermediate results are actually used for generating the final output. Besides the complexity

of output languages, we give another application of the garbage-free form: the complexity is

shown for the ‘translation membership’ problem which determines whether a given pair of

trees is an input-output pair of the translation.

Acknowledgments

First of all, I thank Professor Sebastian Maneth, who has been my supervisor at

National ICT Australia. He made me aware of various interesting topics around tree

transducers. The thesis could not be completed without his helpful and insightful

advice. I would also like to thank him for giving me a truly warm welcome during my

one-year visit to Sydney.

I am grateful to my supervisor at the University of Tokyo, Professor Haruo Hosoya,

who introduced me to the research on XML. He also encouraged me to study abroad.

The invaluable experience greatly changed my life and my perspective.

Finally, I would like to thank my parents Takashi and Yoko for bringing me up

till today. My early interest on computer science owes much to them who gave me a

programmable computer in my childhood.

This work was financially supported by Japan Society for the Promotion of Science.

Kazuhiro Inaba,

December 17, 2008

Contents

1 Introduction 1

1.1 XML and Verifications . 1

1.2 Models of Tree Translations . 1

1.3 A Composable Model—Multi-Return Macro Tree Transducers 3

1.4 Complexities on Macro Tree Transducers 6

1.5 Our Contributions . 8

2 Multi-Return Macro Tree Transducers 10

2.1 Trees and Translations . 10

2.2 Macro Tree Transducers . 12

2.3 Multi-Return Macro Tree Transducers 16

2.4 Simulation of Multi-Return MTTs by MTTs 17

2.4.1 Dealing with tuple return values 18

2.4.2 Dealing with let-bindings . 20

2.5 Simulation of MTT compositions by Multi-Return MTTs 22

2.5.1 Right Composition with a DtT 23

2.5.2 Left Composition with a DtT 25

2.6 Results . 28

3 Expressive Power of Multi-Return MTTs 29

3.1 Deterministic and Dimension-1 mr-mtts 29

3.2 The Power of Multi-Return . 30

3.2.1 From 1-MM to MTIO . 32

3.2.2 Conversion to Weak Normal Form 33

3.2.3 Conversion to Normal Form . 35

3.2.4 Polynomial Upper Bound . 38

3.3 Results . 42

i

4 Complexities on Single MTTs 45

4.1 Definitions . 45

4.2 Translation Membership for OI-MTTs 46

4.2.1 Lowerbound . 46

4.2.2 Upperbounds . 48

4.3 Tractable Classes . 58

5 Complexities on Compositions of MTTs 69

5.1 Overview . 69

5.2 Erasing . 70

5.3 Input-Deletion . 73

5.4 Skipping . 76

5.5 Counting the Number . 79

5.6 Complexity of The Output Language 79

5.7 Garbage-Free Form . 82

6 Conclusion and Future Work 85

6.1 Future Work . 85

References 88

ii

List of Figures

1.1 An mtt Mpal generating palindromic monadic trees 3

1.2 An mtt Mspl splitting the output trees from Mpal 4

1.3 An mr-mtt representing the composition of Mpal and Mspl 5

4.1 Algorithm MATCH . 53

4.2 Algorithm MATCH-TAILREC . 55

iii

Chapter 1

Introduction

1.1 XML and Verifications

XML (Extensible Markup Language) [BPSMM00] is a language for representing

trees. It has now established its position as the standard format for describing and

exchanging structured data on computers. More and more applications are adopting

XML; they store their own data as XML, or they use a standard format based on

XML for communicating with other applications.

As XML processing programs are getting more and more popular, the importance

of verification of such programs is increasing. Suppose we have a program that converts

a summary document of a website written in RSS format (which is a particular XML-

based format) into an XHTML document (again an XML-based format), which is a

suitable format to be displayed in a human-readable way. How can we make sure that

the program always generates a correct XHTML document, or that the program never

gets into errors by any valid input RSS document? More generally, how should we

verify the correctness of XML processing programs in terms of the input and output

XML structures?

1.2 Models of Tree Translations

Such a question has invoked an active body of research on the formal study of

tree transformation models. Note that XML processing is essentially a process of

tree translation. We query on input trees represented by XML documents and obtain

necessary subparts (i.e., subtrees) of the input tree depending on the purpose, and

convert them into another tree that are finally serialized into output XML documents.

Many models of tree translations—top-down tree transducers [Rou70, Tha70], bottom-

1

CHAPTER 1 INTRODUCTION 2

up tree transducers [Tha73], attributed tree transducers [Fül81, Knu68], macro tree

transducers [Eng80, CFZ82], MSO-definable tree translations [Cou94], high-level tree

transducers [EV88], pebble tree transducers [MSV03], etc—have been introduced in

the last few decades. Each of these models can be regarded as a kind of programming

language, whose expressive power is restricted in some way so that typical verification

problems on the model become decidable. Such verification problems include, e.g.,

decision problem for totality or emptiness of the translation, membership test for the

range or the domain, finiteness of the domain, or exact typechecking that determines

the translation always converts any tree in a given input set into a tree in a given

output set. Note that the verification problems are basically undecidable for Turing-

complete programming languages. Thus, a typical use of those formal models is to

approximate some ‘real’ program, and then the decision procedures for verification

problems are applied.

Various properties are desired for models of translations. In particular, the fol-

lowing three perspectives are important: (1) decidability—verification problems are

desired to remain decidable in the model, (2) expressiveness—expressive models al-

low to obtain more accurate (or sometimes, exact) approximation of target programs

in a real programming language, which results in a more accurate verification, and

(3) constructivity—it is better if there exists a simple method for constructing model

representations from target programs. From these points of view, a recent trend is

to regard macro tree transducers (mtts) as a standard model for XML manipulation

among the various models. They are known to subsume all the models mentioned

above in expressiveness [EV85, EM99, EM03a], and moreover, they are shown to be

able to capture the expressive fragment of XML programming languages popular in

practice, such as XSLT or XML-QL [MSV03, EM03a]. Also, they naturally support

a nondeterministic translation model, which often yields better approximation of real

programs than a deterministic model (viz. a complicated if-then-else expression; it

is translated into an mtt that nondeterministically chooses one of the conditional

branches). Yet, verification problems remain decidable for mtts, despite of their high

expressive power [EV85, DE98, FH07].

Nevertheless, mtts still lack some properties desired for modeling XML translations.

In particular, (1) nondeterministic mtts have poor closure properties on composition

and (2) computational complexities for many problems on mtts are still unknown. The

goal of the thesis is to improve these shortcomings of mtts, which will be discussed in

more detail in the subsequent sections.

CHAPTER 1 INTRODUCTION 3

q0(s(x))→ a(q1(x, A(E))) q1(s(x), y)→ a(q1(x, A(y)))

q0(s(x))→ b(q1(x, B(E))) q1(s(x), y)→ b(q1(x, B(y)))

q0(z)→ e q1(z, y)→ y

Figure 1.1: An mtt Mpal generating palindromic monadic trees

1.3 A Composable Model—Multi-Return Macro Tree Trans-

ducers

In general, an mtt composed with even very simple pre- or post- tree translation

cannot be represented by a single mtt. The lack of the compositionality implies diffi-

culty of modular modeling; to model some real program by an mtt, we always have to

construct the mtt as a whole, instead of modeling each smaller subpart of the program

separately and then composing them up. This makes it quite difficult to automate the

verification process of real programs.

Before explaining the issue, let us first briefly introduce the ‘macro tree transducer’

model by an example. Fig. 1.1 is an mtt Mpal representing a nondeterministic trans-

lation that takes as input monadic trees of the form s(s(. . . s(z) . . .)) and produces

output trees of the form δ1(δ2(· · · δn(∆n(· · ·∆1(E) · · ·)) · · ·) where n is the number of

s nodes in the input, each δi is either a or b and each ∆i is the capitalized letter of δi.

In other words, given an input tree of height n, the mtt nondeterministically generates

any one of the palindromes over symbols {a, b} of length 2n, with the latter half being

capitalized. The rules of mtts can be naturally read as an ordinary functional pro-

gramming language. An mtt processes the input tree in top-down direction, starting in

its initial state (q0 in this case) at the root node. Depending on its state and the label

of the current input node, it selects a rule; if more than one rule matches (e.g., as in

the case of the state q0 with the label s that has two matching rules), either one of the

rules is nondeterministically chosen. Then, according to the selected rule, the mtt pro-

duces an output subtree which possibly contains recursive state calls to children of the

current node. Each state is allowed to receive additional parameters in addition to the

current input node. The number of such “accumulating parameters” is fixed for each

state of the transducer. For example, in our example, the state q1 has one parameter

y. The initial state has zero parameters, because we are interested in tree-to-tree, not

(tuple of trees)-to-tree translations. It is well-known that accumulating parameters

CHAPTER 1 INTRODUCTION 4

p0(a(x))→ root(a(p1(x)), p2(x)) p1(a(x))→ a(p1(x)) p2(a(x))→ p2(x)

p0(b(x))→ root(b(p1(x)), p2(x)) p1(b(x))→ b(p1(x)) p2(b(x))→ p2(x)

p0(A(x))→ root(e, A(p2(x))) p1(A(x))→ e p2(A(x))→ A(p2(x))

p0(B(x))→ root(e, B(p2(x))) p1(B(x))→ e p2(B(x))→ B(p2(x))

p0(E)→ root(e, E) p1(E)→ e p2(E)→ E

Figure 1.2: An mtt Mspl splitting the output trees from Mpal

add an expressive power. Mtts realize strictly more translations than top-down tree

transducers (mtts with no parameters); for instance, top-down tree transducers have

at most exponential size increase while mtts can have double-exponential increase.

Let us introduce another mtt Mspl in Fig. 1.2, which is actually a top-down

tree transducer, having no parameters. The transducer Mspl takes a tree of form

δ1(δ2(· · · δn(∆1(· · ·∆m(E) · · ·)) · · ·)), and splits them to two branches: the left branch

becomes δ1(δ2(· · · δn(e) · · ·)) and the right branch becomes ∆1(∆2(· · ·∆m(E) · · ·)).
For example, the input tree a(b(B(A(E)))) is deterministically translated to the output

tree root(a(b(e)), B(A(E))).

Now, suppose we want to model by an mtt some program consisting of three

functions: one function pal modeled by Mpal (recall that, nondeterminism is typically

used for approximating, e.g., a complicated if-then-else expression), another function

spl modeled by Mspl, and a function main defined to first apply pal to the input

and then apply spl to the output from pal . The problem is that there is no known

method for composing nondeterministic mtts, even for the composition with simpler

translations like a deterministic top-down tree transducer in this example! In fact,

the translation Mpal followed by Mspl can be proved not to be representable by a

single mtt. However, even if it were the case that a composition were representable

by a single mtt, no systematic way to construct the composed mtt is known; some

ingenious idea depending on the particular pair of transducers would be required.

To address the compositionality issue, we propose a new model of tree-to-tree

translation called multi-return macro tree transducers (mr-mtts). As its name shows,

an mr-mtt is an mtt extended with the capability of each state returning multiple

tree fragments simultaneously, in contrast to an mtt that can return only one tree.

Compared to mtts, which can propagate multiple trees in a top-down direction by

accumulating parameters but not in a bottom-up direction, mr-mtts may be regarded

CHAPTER 1 INTRODUCTION 5

q0(s(x)) → let (z1, z2)← q1(x, A(E)) in root(a(z1), z2)

q0(s(x)) → let (z1, z2)← q1(x, B(E)) in root(b(z1), z2)

q0(z) → root(e, E)

q1(s(x), y1) → let (z1, z2)← q1(x, A(y1)) in (a(z1), z2)

q1(s(x), y1) → let (z1, z2)← q1(x, B(y1)) in (b(z1), z2)

q1(z, y1) → (e, y1)

Figure 1.3: An mr-mtt representing the composition of Mpal and Mspl

as a model attaining symmetry between top-down and bottom-up propagation of in-

formation. Fig. 1.3 is an example of an mr-mtt. The state q1 is “multi-return”: it

generates pairs of trees. The first component is generated in a top-down manner: at

each input s-node, an a-labeled output node is generated which has below it the first

component (z1) of the recursive q1-call at the child of the current input node. This

is the left branch of the whole output tree. The right branch is obtained by the sec-

ond component and is generated in a bottom-up manner through the accumulating

parameter of q1.

The reader should be able to verify that this single mr-mtt realizes exactly the

composition of Mpal with Mspl. This immediately implies one fact; mr-mtts are more

expressive than normal mtts. Besides an increase in expressive power, mr-mtts are

shown to have better closure properties than mtts: not only for the particular combi-

nation of Mpal and Mspl but in general they are closed under left and right composition

with total deterministic top-down tree transducers (DtTs). This is rather surprising,

because ordinary call-by-value mtts are not closed under composition with DtTs. The

latter was already shown in [EV85] for the case of left-composition. For the case of

right-composition, it is proved in this paper (using the composition of Mpal and Mspl,

which we call twist). In fact, our proof can even be “twisted” to the call-by-name

semantics of mtts to show that call-by-name mtts are also not closed under right-

composition with DtT (this remained open in [EV85]). Thus, the two main classes of

mtts, call-by-value and call-by-name are both not closed under right-composition with

DtT, while call-by-value multi-return mtts are closed.

CHAPTER 1 INTRODUCTION 6

1.4 Complexities on Macro Tree Transducers

The second issue we address is that the computational complexity of verification

problems are left unknown; although the decidability is proved for many problems

on mtts and their compositions, the complexities and concrete algorithms solving the

problems have been left open.

In the thesis, we mainly study the complexity of the membership problem for the

output (string or tree) languages of the class of translations realized by compositions

of mtts (the mtt-hierarchy). Note that we do not explicitly distinguish between string

or tree output languages here, because the translation “yield” which turns a tree into

its frontier string (seen as a monadic tree) is a particular simple macro tree translation

itself and hence the corresponding classes have the same complexity. Small subclasses

of our class of languages considered here are the IO-macro languages (or, equivalently,

the yields of context-free-tree languages under IO-derivation) and the string languages

generated by attribute grammars. Both of these classes are LOG(CFL)-complete

by [Asv81] and [Eng86], respectively. Another subclass of our class is OI-macro lan-

guages, which are equivalent to the indexed languages [Aho68], by [Fis68]. This class

is known to be NP-complete [Rou73]. Hence, our class is NP-hard too (even already

at compositions of two mtts). Our first main result is that output languages of the

mtt-hierarchy are NP-complete; thus, the complexity remains in NP when going from

indexed languages to the full mtt-hierarchy. In terms of space complexity, languages

generated by compositions of top-down tree transducers (mtts without accumulating

parameters) are known to be in DSPACE(n) [Bak78]. This result was generalized

in [Man02] to compositions of total deterministic mtts. Our second main result is that

output languages of the mtt-hierarchy (generated by compositions of nondeterminis-

tic mtts) with regular tree languages as inputs still remains in DSPACE(n) and thus

are context-sensitive. The approach of our proof can be seen as a generalization of

the proofs in [Bak78] and [Man02]; moreover, we make essential use of the idea of

compressed representation of backtracking information, used by Aho in [Aho68] for

showing that the indexed languages are in NSPACE(n).

We show the NP and the DSPACE(n) upperbound by giving a concrete algorithm

testing the membership of output languages. Our approach might look quite simple at

the first sight: given a composition τ = τ1 ; τ2 ; · · · ; τn of mtts and a candidate output

tree t, we iteratively guess the intermediate result of the previous stage. That is, we

first seek sn such that (sn, t) ∈ τn, and then we seek sn−1 such that (sn−1, sn) ∈ τn−1,

and so on. If we eventually reach the very first input tree s1 (which should satisfy

CHAPTER 1 INTRODUCTION 7

(s1, s2) ∈ τ1, of course), then it tells us that t is indeed in the range of the composition

τ . If we cannot find any such sequence of intermediate results, then it implies that t

is not the member of the range.

To carry out this approach, however, we have to solve two big challenges: (1) how

to find the previous intermediate result of a single mtt τi effectively, and (2) how to

limit the size of the intermediate results si. The first issue is actually reduced to the

“translation membership” problem, which asks whether a given input/output pair of

trees is whether or not in τi. We identify the complexities of translation membership for

several classes of mtts. For call-by-value (IO) mtts, we show the problem is in PTIME

by using a technique based on inverse type inference of mtts [EV85]. For linear call-

by-name (OI) mtts, we show NP-completeness and DSPACE(n) space complexity of

the translation membership problem. The challenge here is the space complexity; we

use a compressed representation of Mpal’s output trees for input s, inspired by [MB04],

and then check if t is contained in the output set by using a recursive procedure in

which nodes needed for backtracking are compressed using a trie, similar to Aho’s

compression of index strings in [Aho68].

For the second point, note that each τi may be a translation that deletes much of

its input trees and generate a very small output. Hence, it can be the case |sn| >> |t|,
i.e, there is no bound for the size |sn| with respect to |t|. If such a blow-up happens,

no matter how efficiently we guess the tree |sn|, it inherently takes O(|sn|) time,

which means that we cannot pose any upperbound of the complexity with respect

to |t|. Our key lemma is to avoid this issue. We show that for any composition

sequence τ1 ; τ2 ; · · · ; τn of mtts, there exists an equivalent garbage-free composition

τ0 ; τ ′
1 ; τ ′

2 ; · · · ; τ ′
2n of mtts, meaning that each τ ′

i do not delete much of its input, i.e.,

every output tree t has a corresponding input tree of size only linearly larger than

|t|. In fact, also the initial input tree s1 can be changed into a smaller tree s′1 of size

linear in |t|, for which τ(s′1) = τ(s1). Once we have established the “garbage-free”

form, together with the complexity results for the translation membership problem,

we obtain the NP and DSPACE(n) upperbound by the “simple” approach explained

above.

Besides the membership problem of the output languages, we believe that our

garbage-free form is a useful tool that allows us to derive in a simple approach the com-

plexity results for other verification problems. As an example, we apply our method

and yield the complexity of the translation membership problem for arbitrary mtts in

call-by-name semantics and their compositions.

CHAPTER 1 INTRODUCTION 8

1.5 Our Contributions

The outline and contributions of this thesis are as follows:

• In Section 2, we introduce multi-return macro tree transducers (mr-mtts), which

is a new model of tree translation that enables better compositionality than nor-

mal macro tree transducers (mtts). We prove closure properties of mr-mtts under

left- and right- composition with total deterministic top-down tree transducers.

Also, we characterize the class of translations realized by mr-mtts in terms of

normal mtts.

• In Section 3, we prove that the “multi-return” facility does add power in terms

of expressiveness. This is shown by exhibiting a counterexample that can be

expressed by an mr-mtt but not by an mtt. The proof of the inexpressibility is a

rather long and involved one, which is a natural consequence of the current situ-

ation where there is no standard proof technique for tree transducers analogous

to Pumping Lemma in automata theory [HU79].

Besides the strict inclusion between the class of mr-mtts and mtts, the inex-

pressibility is applied for showing several other results that have been conjec-

tured but left open in the literature. By using the counterexample, we formally

show that (1) the class of mtt-realizable translations are not closed under right-

composition with total deterministic top-down tree transducers, and (2) the class

of mtt-realizable linear-size increase translations is not closed under composition

within themselves.

• In Section 4, the complexity of the “translation membership” problem for a single

mtt is considered. We prove that in call-by-value semantics the problem is in

PTIME, and in call-by-name semantics, it is NP-complete and in DSPACE(n)

for linear mtts. We generalize the PTIME result for several extensions of call-

by-value mtts (including mr-mtts) and restrictions of call-by-name mtts. Those

results are particularly useful as a basis for showing the complexity of other

verification problems, as exemplified in the next section.

• In Section 5, we show that the membership problem of output languages for

compositions of mtts is in the complexity class DSPACE(n) and is NP-complete.

The crucial lemma of the proof is that any sequence of mtts can be transformed

into so-called a garbage-free form, meaning that any subtrees of intermediate

results are actually used for generating the final output. The garbage-free form

CHAPTER 1 INTRODUCTION 9

is also applied to derive the complexity of the translation membership problem

for general non-linear mtts and their compositions.

Then, Section 6 concludes the thesis and suggests possible direction for future research.

Several parts of this thesis have been published in the proceedings of conferences

and workshops. Multi-return macro tree transducers and the results on their expres-

siveness were presented in [IH08]. The compositionality of mr-mtts was presented

in [IHM08]. The complexity of translation membership and output language member-

ship for mtts were first presented in [IM08], and more extensive investigation on the

translation membership problem appeared in [IM09].

Chapter 2

Multi-Return Macro Tree Transducers

Macro tree transducers have been one of the most popular model for XML translations.

Their high expressive power covers tree translations expressible by other models and

several XML translation languages existing in practice, yet they have most of the

important properties to be decidable, which implies that static validations can be

carried out on mtts. However, mtts have very poor compositionality, in the sense that

a composition of an mtt and another very simple translation may not be representable

by an mtt. The lack of compositionality makes it difficult to approximate a ‘real’

program by an mtt. To remedy the shortcoming, in this chapter we introduce a mild

extension of mtts, namely multi-return mtts, and show that they posses better closure

properties under composition.

2.1 Trees and Translations

We denote by ϵ the empty list, i.e., a list of length 0, and by l1.l2 the concatenation

of two lists l1 and l2. A list l is said to be a prefix of a list l′ if there is a list l′′ such

that l.l′′ = l′, and to be a proper prefix if l′′ ̸= ϵ.

A set Σ with a mapping rank : Σ → N is called a ranked set. We often write

σ(k) to indicate that rank(σ) = k and write Σ(k) to denote the subset of Σ of rank-

k symbols. The product of a ranked set Σ and a set B is the ranked set Σ × B =

{⟨σ, b⟩(k) | σ ∈ Σ(k), b ∈ B}. Throughout the thesis, we fix the sets of input variables

X = {x1, x2, . . .}, parameters Y = {y1, y2, . . .}, let-variables Z = {z1, z2, . . .}, and

holes H = {�1,�2, . . .}, which are all of rank 0. We assume any other alphabet to be

disjoint with X, Y , Z, and H. The set Xi is defined as {x1, . . . , xi}, and Yi, Zi, and

Hi are defined similarly. We sometimes use � to denote �1.

10

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 11

The set TΣ of trees t over a ranked set Σ is defined by the BNF

t ::=σ(

k︷ ︸︸ ︷
t, . . . , t) for σ ∈ Σ(k)

We often omit parentheses for rank-0 and rank-1 symbols and write them as strings.

For example, we write abcd instead of a(b(c(d()))). We recursively define the function

label from TΣ × N∗ to Σ as follows. For σ ∈ Σ(k), k ≥ 0:

label(σ(t1, . . . , tk), ϵ) = σ

label(σ(t1, . . . , tk), i.ν) = label(ti, ν).

Thus, the empty list ϵ denotes the root node and ν.i denotes the i-th child of ν. We

define the set pos(t) = {ν ∈ N∗ | label(t, ν) is defined} and call each element of pos(t)

a node of t. We denote by |t| the number of nodes in the tree t. For a node v of t, we

let t|v denote the subtree of t rooted at the node v. For trees t, t1, . . . , tn ∈ TΣ and

σ1, . . . , σn ∈ Σ(0), we denote by t [σ1/t1, . . . , σn/tn] (or sometimes t[σ⃗/t⃗] for brevity)

the simultaneous substitution of the σi by the ti. For a ranked set Σ, a tree C ∈ TΣ∪{�}

that contains exactly one occurrence of � is called a one-hole Σ-context. We write C[t]
as a shorthand for C[�/t].

Let Σ and ∆ be ranked alphabets. A relation τ ⊆ TΣ×T∆ is called a tree translation

(over Σ and ∆) or simply a translation. We write τ(s) to denote the set {t | (s, t) ∈ τ},
and if τ is a function (i.e., |τ(s)| = 1 for any s), we abuse the notation and use τ(s)

to denote the unique output tree rather than the output singleton set. We define

dom(τ) = {a | ∃b : (a, b) ∈ τ} and range(τ) = {b | ∃a : (a, b) ∈ τ}. For two

translations τ1 and τ2, their sequential composition τ1 ; τ2 (“τ1 followed by τ2”) is

the translation {(a, c) | ∃b : ((a, b) ∈ τ1, (b, c) ∈ τ2)}. For two classes T1 and T2 of

translations, we define T1 ;T2 = {τ1 ; τ2 | τ1 ∈ T1, τ2 ∈ T2}. The k-fold composition of

the class T of translations is denoted by T k, and by T ∗ we mean
∪

k≥0 T k.

Relationship to XML Representation Our definition of trees is ranked, i.e., the

number of child nodes is fixed for each node label. On the other hand, XML often

deals with unranked nodes, for which the number of child nodes varies from nodes to

nodes even if their labels are the same. Such unrankedness is usually handled through

an encoding into binary node representation. In binary representation, the first child

of each node is mapped to the first child of the corresponding node in the original

unranked tree, and the second child of each node is mapped to the next sibling in the

unranked representation. For example, the following XML document

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 12

<list>

<item>A</item> <item>B</item> <item>C</item>

</list>

is encoded to a binary tree list(item(A, item(B, item(C,⊥))),⊥) where ⊥ is a special

rank-0 symbol meaning that there are no more siblings. Note that the first item node

has two children: the first child A which is the first child also in the original XML, and

the second child item(B, · · ·) which corresponds to the next sibling of the first item

node in the original XML.

In this thesis, with the encoding in mind, we focus on ranked trees as defined above,

rather than directly dealing with the concrete unranked XML documents.

2.2 Macro Tree Transducers

Macro tree transducers (mtts) are introduced in [Eng80, CFZ82] as a combination

of top-down tree transducers [Rou70, Tha70] and macro grammars [Fis68]. An mtt is

a finite-state machine that processes the input tree in top-down direction (like a top-

down tree transducer), keeping context information by using accumulating parameters

(like a macro grammar). Let us review the formal definition of macro tree transducers.

Definition 2.1. A macro tree transducer (mtt) M is a tuple (Q, Σ, ∆, q0, R), where Q

is the ranked alphabet of states, Σ and ∆ are the input and output alphabets, q0 ∈ Q(0)

is the initial state, and R is the finite set of rules of the form

⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym)→ r

where q ∈ Q(m), σ ∈ Σ(k), and r ∈ T∆∪(Q×Xk)∪Ym
. Rules of such form are called

⟨q, σ⟩-rules, and the set of right-hand sides of all ⟨q, σ⟩-rules is denoted by Rq,σ.

Note that, for technical simplicity and emphasizing the special role of the first

parameter, we adopt the syntax that differs from the one we have used in the Intro-

duction.

Big-Step Semantics A state q of a macro tree transducer can be regarded as a

(nondeterministic) function in functional programming languages. Depending on the

order of evaluation, two different semantics can be considered: call-by-value (or inside-

out, IO) and call-by-name (or, outside-in, OI). For a tree u ∈ T∆∪(Q×TΣ)∪Y , its IO-

semantics JuKM
IO,Γ ⊆ T∆ with respect to M under the environment Γ : Y → T∆ is

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 13

inductively defined as follows.

JyiKM
IO,Γ = {Γ(yi)}Jδ(u1, . . . , un)KM
IO,Γ = {δ(t1, . . . , tn) | ti ∈ JuiKM

IO,Γ for all i}

J⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)KM
IO,Γ =∪ {q

r[x1/s1, . . . , xk/sk]
yM

IO,Γ′

∣∣∣ r ∈ Rq,σ, Γ′(yi) ∈ JuiKM
IO,Γ for all i

}
The OI-semantics JuKM

OI,Γ ⊆ T∆ is defined similarly, but under the environment Γ of

type Y → 2T∆ , as follows.

JyiKM
OI,Γ = Γ(yi)Jδ(u1, . . . , un)KM
OI,Γ = {δ(t1, . . . , tn) | ti ∈ JuiKM

OI,Γ for all i}

J⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)KM
OI,Γ =∪ {q

r[x1/s1, . . . , xk/sk]
yM

OI,Γ′

∣∣∣ r ∈ Rq,σ, Γ′(yi) = JuiKM
OI,Γ for all i

}
We sometimes omit M if it is clear from the context, and Γ if it is an empty environment,

i.e., range(Γ) = ∅.
In IO-semantics, each argument ui of a function call ⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)

is evaluated before entering the function body r, and the corresponding parameter

variable yi is bound to a tree in JuiKM
IO,Γ. Although the choice of the tree from JuiKM

IO,Γ

is nondeterministic, once fixed, each occurrence of yi is always evaluated to the same

tree Γ(yi). On the other hand, in OI-semantics, arguments are not evaluated at a

function-call site; each parameter yi is assigned a set of trees JuiKM
OI,Γ that remembers

all possible values derivable from ui. At each occurrence of yi in function bodies, a

tree in Γ(yi) is nondeterministically chosen. Let us illustrate the difference by the

following mtt M :

⟨q, a⟩(y1)→ b(y1, y1)

⟨q, b⟩ → c

⟨q, b⟩ → d.

In IO-semantics, the set J⟨q, a⟩(⟨q, b⟩)KM
IO consists of two trees, namely,

J⟨q, a⟩(⟨q, b⟩)KM
IO = Jb(y1, y1)KM

IO,(y1 7→c) ∪ Jb(y1, y1)KM
IO,(y1 7→d) = {b(c, c), b(d, d)}.

While in OI, we have four trees:

J⟨q, a⟩(⟨q, b⟩)KM
OI = Jb(y1, y1)KM

OI,(y1 7→{c,d}) = {b(c, c), b(c, d), b(d, c), b(d, d)}.

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 14

In general, we always have JuKM
IO ⊆ JuKM

OI for any expression u. In other words, we can

say that OI have more nondeterminism than IO. Note that, however, this does not

necessarily mean that OI is more expressive than IO; actually, the class of translations

realized by IO- and OI- semantics are known to be incomparable.

For µ ∈ {IO, OI}, the translation realized by M in µ-mode is the relation τµ,M =

{(s, t) ∈ TΣ × T∆ | t ∈ J⟨q0, s⟩KM
µ }. The class of all translations realized by all mtts in

µ-mode is denoted by MTµ. An mtt is called deterministic (respectively, total) if for

every q, σ, the number of rules |Rq,σ| is at most (at least) 1; the corresponding classes of

translations are denoted by prefix D (t). An mtt is called linear (in the input variables)

if in every right-hand side of the rules, each input variable xi appears at most once;

the corresponding class of translation is denoted by prefix L. For example, the class of

translations realized by linear, deterministic, and total mtts in OI mode is denoted by

LDtMTOI. An mtt with all its states of rank 0 (i.e., without accumulating parameters)

is called a top-down tree transducer and abbreviated as tt; the corresponding class of

translations is denoted by T . As a special case, a linear total deterministic top-down

tree transducer with one state only is also called a linear tree homomorphism and the

corresponding class of translations is denoted by LHOM. Since for deterministic and

total mtts the IO- and OI- semantics are known to coincide (Theorem 4.1 of [EV85]),

and so for tts because the only difference Γ of the two semantics is never used in its

evaluation, we always omit the subscripts IO and OI for the classes DtMT and T.

Small Step Semantics Sometimes, it is convenient to regard the rules ⟨q, σ(x⃗)⟩(y⃗)

→ r of mtts as rewrite rules over sentential forms. Intuitively, a sentential form is an

output tree that contains state calls. In each rewriting step, we find a context that

holds such a state call and expand the call to the right hand side of a matching rule

with appropriate substitution. Since state calls can nest, different orders of evaluation

yield different trees. We consider two strategy of rewriting, namely, inside-out (IO)

that always rewrites the innermost state calls, and outside-in (OI) that always rewrites

the outermost state calls.

For an mtt M = (Q, q0, Σ, ∆, R), we define a set ΛM = ∆∪(Q×TΣ) and call trees in

TΛM
sentential forms of M (we omit the subscript M if clear from the context). Binary

relations ⇒IO,M and ⇒OI,M over TΛM is defined as follows. We have u ⇒IO,M u′ if

and only if

u = C[⟨q, σ(s1, . . . , sk)⟩(t1, . . . , tm)], and

u′ = C[r[x1/s1, . . . , xk/sk, y1/t1, . . . , ym/tm]]

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 15

for some one-hole Λ-context C, a rule ⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym) → r, input trees

s1, . . . , sk ∈ TΣ, and output trees t1, . . . , tm ∈ T∆. Note that each argument ti of the

state call is a concrete output tree not containing state calls. That is, in IO-derivation

relation, only the innermost state calls are rewritten. Similarly, we define u⇒OI,M u′

to hold if and only if

u = C[⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)], and

u′ = C[r[x1/s1, . . . , xk/sk, y1/u1, . . . , ym/um]]

for some rule ⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym)→ r, input trees s1, . . . , sk ∈ TΣ, sentential

forms u1, . . . , um ∈ TΛ, and a one-hole Λ-context C such that no position being prefix

of the position of � is labeled an symbol of Q× TΣ. In OI-derivation relation, rewrite

is limited the outermost state calls. Note that each argument is not from T∆, but from

TΛ. It may contain inner state calls.

For µ ∈ {IO, OI}, we say that v is derivable (in µ-mode) from u when u ⇒∗
µ,M v

and define u↓µ,M = {t ∈ T∆ | u⇒∗
µ,M t}. Two sentential forms u and v are equivalent,

written u ≡µ,M v, when u↓µ,M = v↓µ,M . The subscript M is omitted when it is clear.

The “big-step” and “small-step” semantics are well known to coincide as in the

following proposition. In the rest of the thesis, we use both type of semantics, depend-

ing on the situation. Basically, when the structure of the rules or sentential forms is

significant in the proof, we adopt small-step rewriting relations. When the value of

generated output trees are important, we tend to exploit big-step semantics.

Proposition 2.2 (Theorem 3.15 and Theorem 3.21 of [EV85]). JuKM
IO = u↓M,IO andJuKM

OI = u↓M,OI for any u ∈ TΛ. (Note that in [EV85], the notation Lµ(M, u) is used

in place of u↓µ,M and ↑M (↓M , respectively) is used for ↓IO,M (↓OI,M).)

Mtts as Context Translations In the subsequent proofs, it is actually convenient

to extend the above-defined derivation relation from sentential forms to contexts. Fur-

thermore, it is also convenient to generalize contexts so as to contain multiple occur-

rences of several kinds of holes. For a ranked set Σ, a tree C ∈ TΣ∪Hn is called

Σ-n-context (recall that Hn = {�1, . . . ,�n}). We write C[s1, . . . , sn] as a shorthand

for C[�1/s1, . . . ,�n/sn]. Thus, a one-hole Σ-context is a Σ-1-context C that contains

exactly one occurrence of �1. Let M = (Q, q0, Σ,∆, R) be an mtt and rank-0 symbols

�1, . . . ,�n ̸∈ Λ. Then, for C, C′ ∈ TΛ∪{�1,...,�n}, we write C ⇒µ,M C′ when the rela-

tion holds in the extended mtt M ′ = (Q, q0, Σ, ∆ ∪ {�1, . . . ,�n}, R). The relations

C ⇒∗
µ,M C′ and C↓µ,M are extended accordingly.

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 16

By using the derivation relation over contexts, the following known propositions

hold. Intuitively, when a sentential form can be split to a context and subtrees in T∆,

performing derivation from the whole sentential form is equivalent to performing first

derivation from the context and then substitution of the subtrees. We will repeatedly

use these propositions in the sequel (mainly in Chapter 3).

Proposition 2.3 (Lemma 3.19 of [EV85]). Let C be a Λ-n-context and t1, . . . , tn ∈ T∆.

Then we have C[t1, . . . , tn]↓IO = {D[t1, . . . , tn] | D ∈ C↓IO}

Proposition 2.4 (Lemma 5.2 of [EV85]). Let C be a Λ-n-context and r1, . . . , rn ∈ TΛ.

If (1) C contains exactly one occurrence for each of �1, . . . ,�n, or (2) C contains at

least one occurrence for each of �1, . . . ,�n and the mtt is deterministic, then we have

C[r1, . . . , rn]↓IO = {D[t1, . . . , tn] | D ∈ C↓IO, ti ∈ ri↓IO}

2.3 Multi-Return Macro Tree Transducers

Multi-return macro tree transducers extend mtts by construction and deconstruc-

tion (via let expressions) of tuples of return values. Each state now has a “dimension”

which is the number of trees it returns.

Definition 2.5. A multi-return macro tree transducer (mr-mtt) of dimension d≥1 is

a tuple (Q, q0, Σ,∆, R,D), where Q, q0, Σ, and ∆ are as for mtts, D is a mapping from

Q to {1, . . . , d} such that D(q0) = 1, and R is a set of rules of the form ⟨q, σ(x⃗)⟩(y⃗)→ r

where r ∈ rhsD(q) and, for e ≥ 1 the set rhse is defined as:

r ::= l1 . . . ln (u1, . . . , ue) (n ≥ 0)

l ::= let (zi1 , . . . , ziD(q′))← ⟨q
′(k), xj⟩(u1, . . . , uk) in

with u1, u2, . . . ∈ T∆∪Y ∪Z , q′ ∈ Q, xj ∈ X, and zi ∈ Z. We require that any rule

is well-formed, that is, the leftmost occurrence of any variable zi must appear at the

“binding” position (between the symbol let and the symbol ←). We also require that

each let-variable zi occurs at most once at the binding position in a single right-hand

side.

The IO semantics of multi-return mtts are defined under an environment Γ : Y ∪

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 17

Z → TΣ as follows.

JyiKM
IO,Γ = {Γ(yi)}JziKM
IO,Γ = {Γ(zi)}Jδ(u1, . . . , un)KM
IO,Γ = {δ(t1, . . . , tn) | ti ∈ JuiKM

IO,Γ for all i}

J⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)KM
IO,Γ =∪ {q

r[x1/s1, . . . , xk/sk]
yM

IO,Γ′

∣∣∣ r ∈ Rq,σ, Γ′(yi) ∈ JuiKM
IO,Γ for all i

}
Jlet (z1, . . . , ze)← f in κKM

IO,Γ =∪ {JκKM
IO,Γ++(z1 7→t1,...,zd 7→td)

∣∣∣ (t1, . . . , td) ∈ JfKM
IO,Γ

}
J(u1, . . . , ud)KM

IO,Γ = {(t1, . . . , td) | ti ∈ JuiKM
IO,Γ for all i}

Here, Γ++(z1 7→ t1, . . . , zd 7→ td) denotes an environment Γ′ such that Γ′(zi) = ti and

Γ′(w) = Γ(w) for any other w ∈ Y ∪ Z.

The translation realized by M in IO-mode is the relation τIO,M = {(s, t) ∈ TΣ×T∆ |
t ∈ J⟨q0, s⟩KM

IO}. The class of translations realized by mr-mtts is denoted by MM. By

d-MM with d ≥ 1, we denote the class of translations realized by mr-mtts of dimension

d. Total, deterministic, and linear mr-mtts are defined as for mtts, and the prefixes

D, t, and L are used in the same way.

For mr-mtts we only consider IO semantics, because we could not find any sensible

semantics for OI case. The problem of defining OI semantics for mr-mtts is in the

semantics of let-bindings; how should we assign a set of trees for each let-variable zi?

The only meaningful way to define it seems to be: Γ(zi) = {ti | (. . . , ti, . . .) ∈ JfK}, but

if we adopt this definition, then the two variables Γ(z1) and Γ(z2) that refer different

component of the same return value of a state call behaves independently, which makes

it useless to introduce tuple return values. In Chapter 2 and Chapter 3, we usually

omit the IO subscript, since the semantics considered is always IO.

2.4 Simulation of Multi-Return MTTs by MTTs

This section gives a characterization of mr-mtts by normal mtts. That is, it is

shown that any mr-mtt can be decomposed into a three-fold composition of simpler

transducers, namely, a pre-processing linear tree homomorphism for dealing with let-

bindings, a single-return mtt doing the essential translation, and a post-processing

linear total deterministic tt for dealing with tuples.

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 18

2.4.1 Dealing with tuple return values

To simulate tuple return values by single-return mtts, we use special symbols to

represent tuples and selection. For n ≥ 1, define Ln
tup = {ρ(1)

1 , . . . , ρ
(n)
n , π

(1)
1 , . . . , π

(1)
n }.

Intuitively, ρi means “make a tuple of i elements” and πi means “select i-th element

of”. We construct the simulating single-return mr-mtt by translating each right-hand

side of the original mr-mtt, so that (1) every function returns a single tree ρe(t1, . . . , te)

instead of a tuple (t1, . . . , te) and (2) every use of a let-variable z is enclosed as πi(z) by

a selection symbol πi with an appropriate index i. Then, we apply a post-processing

transducer that interprets these tupling and selection nodes. We define the transducer

tupsn
Σ whose purpose is to recursively convert subtrees of the form πi(ρk(t1, . . . , tk))

into ti. The tupling-and-selection transducer tupsn
Σ is the linear deterministic total

top-down tree transducer with input alphabet Σ ∪ Ln
tup, output alphabet Σ, set of

states {q1, . . . , qn}, initial state q1, and the following rules for each qi:

⟨qi, πk(x1)⟩ → ⟨qk, x1⟩

⟨qi, ρk(x1, . . . , xk)⟩ → ⟨q1, xi⟩ if 1 ≤ i ≤ k

→ ⟨q1, x1⟩ otherwise

⟨qi, σ(x1, . . . , xm)⟩ → σ(⟨q1, x1⟩, . . . , ⟨q1, xm⟩) for σ ∈ Σ(m),m ≥ 0.

We add the third rule (the “otherwise” case) for two reasons: to make the transducer

total, and to skip a ρ1 node at the root position (note that in the simulating transducer,

the initial state q0 returns trees of the form ρ1(t1)).

Lemma 2.6. For any d ≥ 1, d-MM ⊆ 1-MM ; LDtT. Totality and determinism are

preserved from the mr-mtt of dimension d to the mr-mtt of dimension 1. Also, the

number of rules and parameters are preserved.

Proof. Let M = (Q, Σ, ∆, q0, R, D) be an mr-mtt of dimension d. We define another

mr-mtt M ′ = (Q,Σ, ∆ ∪ Ld
tup, q0, R

′, D′), where D′(q) = 1 for all q ∈ Q and R′ =

{⟨q, σ(x⃗)⟩(y⃗) → et(r) | ⟨q, σ(x⃗)⟩(y⃗) → r ∈ R}. The explicit-tupling function et is

defined as follows. For the right-hand side r of the form

let (zi1+1, . . . , zi1+D(qj1))← ⟨qj1 , xk1⟩(u1,1, . . . , u1,rank (qj1)) in

...

let (zin+1, . . . , zin+D(qjn))← ⟨qjn , xkn⟩(un,1, . . . , un,rank (qjn)
) in (u0,1, . . . , u0,e),

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 19

the new right-hand side et(r) is defined as follows

let z1 ← ⟨qj1 , xk1⟩(u1,1θ, . . . , u1,rank (qj1)
θ) in

...

let zn ← ⟨qjn , xkn⟩(un,1θ, . . . , un,rank (qjn)
θ) in ρe(u0,1θ, . . . , u0,eθ)

where θ is the substitution that maps zix+y to πy(zx) for each 1 ≤ x ≤ n and 1 ≤ y ≤
D(qjx). We now show the translation τM ′ followed by τtupsd

∆
realizes τM . The proof

is by induction on the structure of s ∈ TΣ, showing the following equation

J⟨q, s⟩(u1, . . . , um)KM
Γ = rmtup

(J⟨q, s⟩(u′
1, . . . , u

′
m)KM ′

Γ′

)
for all states q ∈ Q, environments Γ and Γ′ such that JuiKM

Γ = τtupsd
∆
(Ju′

iKM ′

Γ′) for

all i, with rmtup(X) = {(τtupsd
∆
(t1), . . . , τtupsd

∆
(te)) | ρe(t1, . . . , te) ∈ X}. Note

that it obviously follows from the definition of et that the root of any tree t ∈J⟨q, s⟩(u′
1, . . . , u

′
m)KM ′

Γ is labeled ρD(q). Also note that when X ⊆ {ρ1(t) | t ∈ T∆∪Ld
tup
},

rmtup coincides tupsd
∆. Therefore, if we apply the equation to q0, we have τM =

τM ′ ; τtupsd
∆
, which proves the lemma. Let s be σ(s1, . . . , sk) (the base step for the

induction is the case with k = 0). We immediately have

J⟨q, s⟩(u1, . . . , um)KM
Γ =

∪
{Jr[x⃗/s⃗]KM

Ξ | r ∈ Rq,σ, Ξ(yi) ∈ JuiKΓ}
from the left-hand side and

rmtup
(J⟨q′, s⟩(u′

1, . . . ,u
′
m)KM ′

Γ

)
=

∪
{Jr′[x⃗/s⃗]KM ′

Ξ′ | r′ ∈ R′
q,σ, Ξ′(yi) ∈ Ju′

iKΓ′}.

=
∪
{rmtup(Jet(r[x⃗/s⃗])KM ′

Ξ′) | r ∈ Rq,σ, Ξ′(yi) ∈ Ju′
iKΓ′}

from the right-hand side. To prove these two sets are equal, it is sufficient to showJr[x⃗/s⃗]KM
Ξ = rmtup(Jet(r[x⃗/s⃗])KM ′

Ξ′). Here, by nested induction on the structure of r,

we prove a slightly stronger proposition. That is, Jr[x⃗/s⃗]KM
Ξ = rmtup(Jet(r[x⃗/s⃗])KM ′

Ξ′)

for any Ξ and Ξ′ such that the following condition holds: Ξ(y) = τtupsd
∆
(Ξ′(y)) for

all y ∈ Y and (Ξ(zix+1), . . . ,Ξ(zix+d)) = rmtup(Ξ′(zx)) for all corresponding variables

(zix+1, . . . , zix+d) and zx. Note that for such Ξ and Ξ′, we have JuKM
Ξ = τtupsd

∆
(JuθKM ′

Ξ′)

for u ∈ T∆∪Y ∪Z and θ as in the definition of et , because Jzix+yKM
Ξ = Ξ(zix+y) =

τtupsd
∆
(Ξ′(zx)) = τtupsd

∆
(JzxKM ′

Ξ′). Thus, if r is of the form (u0,1, . . . , u0,e), we haveJr[x⃗/s⃗]KM
Ξ = rmtup(Jet(r[x⃗/s⃗])KM ′

Ξ′). If r is of the form

let (zi1+1, . . . , zi1+D(qj1))← ⟨qj1 , xk1⟩(u1,1, . . . , u1,rank (qj1)) in r′,

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 20

then Jr[x⃗/s⃗]KM
Ξ is the union of all Jr′[x⃗/s⃗]KM

ζ ’s over environments ζ such that ζ(zi1+y) =

ty for some (t1, . . . , tD(qj1)) ∈ Jf1K = J⟨qj1 , sk1⟩(u1,1, . . . , u1,rank (qj1)
)KM

Ξ . Similarly,

then Jet(r[x⃗/s⃗])KM
Ξ is the union over all ζ ′’s such that ζ ′(z1) = t1 for some t1 ∈ Jf ′

1K =J⟨qj1 , sk1⟩(u1,1θ, . . . , u1,rank (qj1)
)θKM ′

Ξ′ . Since by outer induction hypothesis, Jf1K =

rmtup(Jf ′
1K), the environments ζ and ζ ′ satisfies the condition of inner induction.

Therefore, we have Jr′[x⃗/s⃗]KM
ζ = rmtup(Jet(r′[x⃗/s⃗])KM ′

ζ′) by inner induction hypothesis,

which proves the lemma.

2.4.2 Dealing with let-bindings

Even without multiple return values, let-bindings still provide some additional

power with respect to ordinary mtts. For example, the (right-hand side of) mr-mtt

rule let z ← ⟨q, x⟩ in δ(z, z) is not necessarily equivalent to the mtt rule δ(⟨q, x⟩, ⟨q, x⟩).
In the former rule, the two children of δ must be the same tree that is returned by a

single state call ⟨q, x⟩. On the other hand, in the latter rule, two state calls ⟨q, x⟩ may

return different trees due to nondeterminism. Thus, for simulating let-bindings we

must first fully evaluate state calls to an output tree and then copy them if required.

Basically, such order of evaluation can be simulated using accumulating parameters

and state calls, since we adopt call-by-value semantics. For instance, the above example

of mr-mtt rule is equivalent to the mtt rule ⟨p, x⟩(⟨q, x⟩) using a helper state p and a

set of helper rules ⟨p, σ(x⃗)⟩(y)→ δ(y, y) for every σ ∈ Σ.

However, this approach does not work for nested let-bindings. The problem is that

the calls of helper states to simulate copying must be applied to some child of the

current node. Consider the following rule:

⟨q, σ(x1, . . . , xn)⟩ → let z1 ← ⟨q1, x1⟩ in

let z2 ← ⟨q2, x2⟩(z1) in
...

let zn ← ⟨qn, xn⟩(z1, . . . , zn−1) in δ(z1, . . . , zn).

To simulate the first let-binding, we need a helper state call like ⟨p, xi⟩(⟨q1, x1⟩), and

we do the rest of the work in the ⟨p, σ⟩-rules. But this time, we have to generate other

state calls such as ⟨q2, x2⟩(z1) in the helper rule, which is impossible since in ⟨p, xi⟩
we are only able to apply states to the children of xi, while x2 is the sibling of xi.

Our solution is to insert helper nodes of rank-1 above each node of the input tree,

similar as done for the removal of stay moves in [EM03a]. We can then run the helper

states on the inserted nodes in order to simulate the let-bindings. For instance, the

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 21

first two lets of the above rule can be simulated by

⟨p, σ̄1(x1)⟩ → ⟨p, x1⟩(⟨⟨q, 1⟩, x1⟩)

⟨p, σ̄2(x1)⟩(z1)→ ⟨p, x1⟩(z1, ⟨⟨q2, 2⟩, x1⟩(z1)).

The new helper state ⟨q, i⟩ “skips” the following barred nodes and calls q at the i-th

child of the next σ-node.

For n ∈ N, we define the transducer monn
Σ (“monadic insertion”) with the single

state q that inserts n helper nodes for each input node as follows:

⟨q, σ(x1, . . . , xk)⟩ → σ̄1(σ̄2(· · · σ̄n(σ(⟨q, x1⟩, . . . , ⟨q, xk⟩)) · · ·) for each σ ∈ Σ(k).

Since monn
Σ is total deterministic top-down tree transducer with the number of states

is one, it falls into the class of linear tree homomorphism.

Lemma 2.7. 1-MM ⊆ LHOM ; MTIO. Totality and determinism are preserved from

the mr-mtt to the mtt. If the mr-mtt has n states of rank ≤k, r rules, ≤l let-bindings

in any rule, and input symbols of rank ≤b, then the mtt has at most n +nb + r states,

k + l parameters, and rl + qbl rules.

Proof. Let the mr-mtt be M = (Q,Σ, ∆, q0, R, D). The state set of the simulating mtt

M ′ is Q ∪ {q(k+m)
r | r ∈ R, m is the number of let-bindings in r and k is the rank of

the state of r} ∪ (Q× {1, . . . , b}). Suppose the mr-mtt has a rule r ∈ R of the form:

⟨q, σ(x⃗)⟩(y⃗)→ let z1 ← ⟨p1, xi1⟩(· · ·) in · · · let zm ← ⟨pm, xim⟩(· · ·) in u.

The simulating mtt has the following rules each corresponding to one let-binding:

⟨q, σ̄1(x1)⟩(y⃗)→ ⟨qr, x⟩(y⃗, ⟨⟨p1, i1⟩, x1⟩(· · ·), dmy, . . . , dmy)

⟨qr, σ̄2(x1)⟩(y⃗, z1, . . . , zm)→ ⟨qr, x⟩(y⃗, z1, ⟨⟨p2, i2⟩, x1⟩(· · ·), dmy, . . . , dmy)
...

⟨qr, σ̄m(x1)⟩(y⃗, z1, . . . , zm)→ ⟨qr, x⟩(y⃗, z1, . . . , zm−1, ⟨⟨pm, im⟩, x1⟩(· · ·))

⟨qr, σ̄m+1(x1)⟩(y⃗, z1, . . . , zm)→ ⟨qr, x⟩(y⃗, z1, . . . , zm)

...

⟨qr, σ̄l(x1)⟩(y⃗, z1, . . . , zm)→ ⟨qr, x⟩(y⃗, z1, . . . , zm)

⟨qr, σ(x⃗)⟩(y⃗, z1, . . . , zm)→ u

where dmy is an arbitrary rank-0 output symbol. These arguments are passed just for

supplying exactly m arguments and will never appear in output trees.

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 22

The states ⟨p, j⟩ ∈ Q × {1, . . . , b} are used to remember the correct child number

j where to apply p. The rules for ⟨p, j⟩ are:

⟨⟨p, j⟩, σ̄i(x1)⟩(y⃗)→ ⟨⟨p, j⟩, x1⟩(y⃗) for each σ ∈ Σ and 1 ≤ i ≤ l

⟨⟨p, j⟩, σ(x⃗)⟩(y⃗)→ ⟨p, xj⟩(y⃗) for each σ ∈ Σ of rank ≥ j.

Obviously, J⟨⟨p, j⟩, σ̄i(· · · σ̄i(σ(s⃗)) · · ·)⟩(⃗t)KM ′

Γ = J⟨p, sj⟩(⃗t)KM ′

Γ when the rank of σ is

more than or equal to j.

In order to show τM = mon l
Σ ; τM ′ and hence 1-MM ⊆ LHOM ;MT, it is sufficient

to prove J⟨q, s⟩(u⃗)KM
Γ = J⟨q,mon l

Σ(s)⟩(u⃗)KM ′

Γ′ for all q, s, and u⃗ such that JuiKM
Γ =Ju′

iKM ′

Γ′ . The proof is by induction on the structure of s. Let s = σ(s1, . . . , sk) and

r be a right-hand side in Rq,σ of the form let z1 ← ⟨p1, xi1⟩(· · ·) in · · · let zm ←
⟨pm, xim⟩(· · ·) in u. By a straightforward induction on the number of let-bindings, for

all 1 ≤ j ≤ m + 1 we can show the following equation

Jlet zj ← ⟨pj , sij
⟩(· · ·) in · · · let zm ← ⟨pm, sim

⟩(· · ·) in uKM
Γ

= J⟨qr, σ̄i(· · ·σ(s1, . . . , sk) · · ·)⟩(y⃗, z1, · · · , zj−1, ⟨⟨pj , ij⟩, x1⟩(· · ·), dmy, . . . , dmy)KM ′

Γ

which proves the outer induction.

Let us take a look at totality and determinism. The original state q remains total

(or deterministic, respectively) for a symbol σ̄1 if and only if it is total (deterministic)

for σ in the original rule set. Newly added states qr are deterministic, and they are

total if the original state q was. Newly added states ⟨p, j⟩ are all deterministic. For the

remaining undefined part (q-rules for σ̄2, . . . , σ̄l and σ and ⟨p, j⟩-rules for σ with rank

< j), we can add dummy rules to regain totality if the original mr-mtt was total.

By combining Lemmas 2.6 and 2.7, we obtain the main theorem of this section.

Theorem 2.8. MM ⊆ LHOM ; MTIO ; LDtT. Totality and determinism are preserved.

2.5 Simulation of MTT compositions by Multi-Return MTTs

In this section, we show that a composition of an mtt with any total deterministic

top-down tree transducer can be simulated by a single mr-mtt, i.e., we have the inverse

inclusion of Lemma 2.8. In fact, the simulation can be generalized to a composition

of an mr-mtt with total deterministic top-down tree transducers, which gives a better

compositionality of mr-mtts.

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 23

2.5.1 Right Composition with a DtT

We show that MM is closed under right-composition with DtT. The idea is to

construct the simulating mr-mtt by running the tt on the right-hand side of each rule

of the original mr-mtt. Let {p1, . . . , pn} be the set of states of the tt. We construct the

rules so that if a state q returns a tuple (t1, . . . , td), then the corresponding state q′ of

the simulating mr-mtt returns (J⟨p1, t1⟩K, . . . , J⟨p1, td⟩K, . . . , J⟨pn, t1⟩K, . . . , J⟨pn, td⟩K).
Lemma 2.9. MM; DtT ⊆ MM. Totality and determinism are preserved. The number

of parameters and the dimension of the resulting mr-mtt is n times larger the original

one, where n is the number of states of the tt. The number of states and the number

of rules each increase by 1.

Proof. Let M = (Q, Σ, ∆, q0, RM , D) be an mr-mtt and N = (P,∆,Γ, p1, RN) be a

DtT with P = {p1, . . . , pn}. We define the mr-mtt M ′ = (Q′, Σ,Γ, q̂, R′, D′), where

Q′ = {q′(kn) | q(k) ∈ Q} ∪ {q̂(0)}, D′(q′) = n ·D(q), D′(q̂) = 1, and

R′ = {⟨q, σ(x⃗)⟩(y1, . . . , ykn)→ runN(r) | ⟨q, σ(x⃗)⟩(y1, . . . , yk)→ r ∈ RM}

∪ {⟨q̂, σ(x⃗)⟩ → runN0(r) | ⟨q0, σ(x⃗)⟩ → r ∈ RM}

where runN and runN0 are defined inductively as follows.

runN0((u1)) = (J⟨p1, u1⟩KN ′
)

runN0(let (z1, . . . , zd)← ⟨q, x⟩(u1, . . . , uk) in κ) =

let (z1, . . . , zdn)← ⟨q, x⟩(puk) in runN0(κ)

runN((u1, . . . , ud)) = (pud)

runN(let (z1, . . . , zd)← ⟨q, x⟩(u1, . . . , uk) in κ) =

let (z1, . . . , zdn)← ⟨q, x⟩(puk) in runN(κ)

where pum = J⟨p1, u1⟩KN , . . . , J⟨p1, um⟩KN , . . . , J⟨pn, u1⟩KN , . . . , J⟨pn, um⟩KN with N

extended by the rules ⟨pj , yi⟩ → y(i−1)n+j and ⟨pj , zi⟩ → z(i−1)n+j for 1 ≤ i ≤ k,

1 ≤ j ≤ n.

By induction on the structure of s, we show the following equation

J⟨q, s⟩(u′
1, . . . , u

′
k, . . . , u′

n(k−1)+1, . . . , u
′
kn)KM ′

Γ′ ={(J⟨p1, t1⟩KN , . . . , J⟨pn, td⟩KN
) ∣∣∣ (t1, . . . , td) ∈ J⟨q, s⟩(u1, . . . , uk)KM

Γ

}
for all q ∈ Q, u′

i ∈ T∆∪Y , and environments Γ, Γ′ that are satisfying Ju′
(i−1)n+jKM ′

Γ′ =J⟨pj , JuiKM
Γ ⟩KN . (Note that here we abuse our notation so that JuiK denotes its unique

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 24

element rather than the set itself. Since ui’s do not contain state calls, its semantic

values is uniquely determined from each environment.) Let s′ = σ(s1, . . . , sk) (the

base case of the induction is the case k = 0). By the definition of the IO-semantics,

we have

J⟨q, s⟩(u′
1, . . . , u

′
k, . . . , u′

n(k−1)+1, . . . , u
′
kn)KM ′

Γ′ =∪
r∈Rq,σ

{JrunN (r)KM
Ξ′ | Ξ(yi) ∈ Ju′

iKM ′

Γ′ }

and {(J⟨p1, t1⟩KN , . . . , J⟨pn, td⟩KN
) ∣∣∣ (t1, . . . , td) ∈ J⟨q, s⟩(u1, . . . , uk)KM

Γ

}
=∪

r∈Rq,σ

{(J⟨p1, t1⟩KN , . . . , J⟨pn, td⟩KN
) ∣∣∣ (t1, . . . , td) ∈ JrKM

Ξ , Ξ(yi) ∈ JuiKM
Γ

}
To show these two sets are equal, it is sufficient to prove the following statement:

JrunN (r)KM ′

Ξ′ =
{(J⟨p1, t1⟩KN , . . . , J⟨pn, td⟩KN

) ∣∣∣ (t1, . . . , td) ∈ JrKM
Ξ

}
for any Ξ′(y(i−1)n+j) = J⟨pj , Ξ(yi)⟩KN and Ξ′(z(i−1)n+j) = J⟨pj ,Ξ(zi)⟩KN . We prove

this by inner induction on the structure of r. If r = (u1, . . . , ud), then runN (r)

becomes pud = (J⟨p1, u1⟩KN , . . . , J⟨p1, ud⟩KN , . . . , J⟨pn, u1⟩KN , . . . , J⟨pn, ud⟩KN). Hence

the ((i − 1)n + j)-th element of unique tree JrunN (r)KM ′

Ξ′ is
qJ⟨pj , ui⟩KN

yM ′

Ξ′ , and

the ((i− 1)n + j)-th element of
{(J⟨p1, t1⟩KN , . . . , J⟨pn, td⟩KN

) ∣∣∣ (t1, . . . , td) ∈ JrKM
Ξ

}
isJ⟨pj , JtiKM

Ξ ⟩KN . From the condition on Ξ and Ξ′, these two trees are equal.

If r = let (z1, . . . , zd)← ⟨q′, xi⟩(u1, . . . , um) in r† (∈ rhse), then we have runN (r) =

let (z1, . . . , zdn)← ⟨q′, xi⟩(pum) in runN (r†). Therefore, by definition of IO-semantics,JrunN (r)KM ′

Ξ′ is equal to
∪
{JrunN (r†)KM ′

Θ′ | Θ′= Ξ′++(z1 7→ t1, . . . , zdn 7→ tdn), (t1, . . . ,

tdn) ∈ J⟨q′, xi⟩(pum)KM ′

Ξ′ }, and by outer induction hypothesis, we can replace the state

call J⟨q′, xi⟩(pum)KM ′

Ξ′ with its counterpart in M and obtain the following equal set:∪
{JrunN (r†)KM ′

Θ′ | Θ′ = Ξ′ ++(z1 7→ J⟨p1, t1⟩KN , . . . , zdn 7→ J⟨pn, td⟩KN), (t1, . . . , td) ∈J⟨q′, xi⟩(u1, . . . , um)KM
Ξ }. Then, by inner induction hypothesis, this set is equal to∪

{(J⟨p1, t
†
1⟩KN , . . . , J⟨pn, t†e⟩KN) | (t†1, . . . , t

†
e) ∈ Jr†KM

Θ ,Θ = Ξ ++(z1 7→ t1, . . . , zd 7→
td), (t1, . . . , td) ∈ J⟨q′, xi⟩(u1, . . . , um)KM

Ξ }. Finally, by definition of IO-semantics this

is equal to
{(J⟨p1, t

†
1⟩KN , . . . , J⟨pn, t†e⟩KN

) ∣∣∣ (t†1, . . . , t
†
d) ∈ JrKM

Ξ

}
.

By a very similar induction on right-hand side structure (using runN 0 instead

of runN), we can also show J⟨q̂, s⟩KM ′
=

{J⟨p1, t⟩KN
∣∣∣ t ∈ J⟨q0, s⟩KM

Γ

}
, which proves

τM ; τN = τM ′ and hence MM ; DtT ⊆ MM.

Note that the proof of Lemma 2.9 relies on the totality of N. It simulates all pi-

translations, some of which may not contribute to the final output. If N is not total,

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 25

this try-and-discard strategy does not work. Undefined calls that are to be discarded

will stop the whole translation, since we are considering call-by-value evaluation. The

proof relies also on the determinism of N. If pj is nondeterministic, multiple calls

of pj(yi) may generate different outputs and thus replacing them by the same single

variable y(i−1)n+j yields incorrect results.

2.5.2 Left Composition with a DtT

Next, we investigate the case of left-composition. The idea is, again, to simulate

the composition DtT ; MT by constructing an mr-mtt by running the mtt on the rules

of tt. Note that we crucially use let-bindings here for simulating parameter copying of

the original mtt. Suppose we have a tt rule ⟨q, e(x1)⟩ → a(b, ⟨q, x1⟩) and mtt rules:

⟨p, a(x1, x2)⟩(y1)→ ⟨p, x1⟩(⟨p, x2⟩(y1))

⟨p, b⟩(y1)→ d(y1, y1).

Using a let-binding, we construct a rule of the simulating transducer as follows:

⟨⟨p, q⟩, e(x1)⟩(y1)→ let z ← ⟨⟨p, q⟩, x1⟩ in d(z, z)

which correctly preserves the original semantics that the left and right child of the d

node are equal. But without let-bindings, we cannot avoid duplicating a state call,

and at best we will have the following rule:

⟨⟨p, q⟩, e(x1)⟩ → d(⟨⟨p, q⟩, x1⟩, ⟨⟨p, q⟩, x1⟩).

This is clearly incorrect, since the duplicated two state calls may behave nondeter-

ministically, and yield different output trees, which is not intended by the original

translation.

Lemma 2.10. DtT ; MTIO ⊆ 1-MM. Totality and determinism are preserved. The

number of states is n times larger, where n is the number of states of the DtT. The

number of parameters remains same. The number of rules may be double exponential

with respect to the depth of right-hand sides of the DtT.

Proof. Let M1 = (Q,Σ,Γ, q0, R1) be a DtT and M2 = (P,Γ, ∆, p0, R2) an mtt. Define

M× = (P ×Q,Σ, ∆, ⟨p0, q0⟩, R, D) with:

R = {⟨⟨p, q⟩, σ(x⃗)⟩(y⃗)→ κ | κ ∈ fz(⟨p, r⟩(y⃗), z),

r is the right-hand side of the unique ⟨q, σ⟩-rule of R1)}.

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 26

Intuitively, a state ⟨p, q⟩ denotes the translation by q followed by p. The relation fz

is very similar to the IO-semantics of M2 (thus, fz(⟨p, r⟩(y⃗), u) should be intuitively

read as JuKM2
Γ with Γ(z) ∈ J⟨p, r⟩(y⃗)KM2 . However, to “factor out” let-bindings for

avoiding incorrect duplication of state calls, we define it slightly differently. For the

sake of simplicity, we define fz as a nondeterministic function as follows:

fz(y, u) = u[z/y]

fz(δ(t1, . . . , tk), u) = fz1(t1, · · · fzk
(tk, u[z/δ(z1, . . . , zk)]) · · ·)

fz(⟨p, ⟨q, xi⟩⟩(t1, . . . , tk), u) = fz1(t1, · · · fzk
(tk,

let z ← ⟨⟨p, q⟩, xi⟩(z1, . . . , zk)) in u) · · ·)

fz(⟨p, γ(g⃗)⟩(t1, . . . , tk), u) = fz1(t1, · · · fzk
(tk, fz(r′[x⃗/g⃗, y⃗/z⃗], u) · · ·)

for every right-hand side r′ of any ⟨p, γ⟩-rule, γ ∈ Γ.

The last argument u of fz denotes a context where the translated right-hand side of

the rule should be placed.

By induction on the structure of s, we show

J⟨⟨p, q⟩, s⟩(u′
1, . . . , u

′
m)KM×

Θ×
= J⟨p, J⟨q, s⟩KM1⟩(u1, . . . , um)KM2

Θ

for any p ∈ P , q ∈ Q, and environments Θ× and Θ such that Ju′
iKM×

Θ×
= JuiKM2

Θ for

all i. From this proposition, it immediately follows that τM1 ; τM2 = τM× and hence

DtT ;MT ⊆ 1-MM, by taking p = p0 and q = q0. Let s = σ(s1, . . . , sk) (the base

case is the case k = 0) and r the unique right-hand side in Rp,σ. By definition of the

IO-semantics, we have

J⟨⟨p, q⟩, s⟩(u′
1, . . . , u

′
m)KM×

Θ×
=

∪
κ∈fz(⟨p,r⟩(y⃗),z)

{Jκ[x⃗/s⃗]KM×
Ξ×
| Ξ(yi) ∈ Ju′

iKM×
Θ×

}
and

J⟨p, J⟨q, s⟩KM1⟩(u1, . . . , um)KM2
Θ = J⟨p, Jr[x⃗/s⃗]KM1⟩(u1, . . . , um)KM2

Θ

To show these two sets are equal, it is sufficient to show
∪

κ∈fz(r′,u)Jκ[x⃗/s⃗]KM×
Ξ =

{JuKM×
Ξ++(z 7→t) | t ∈ Jev1 (r′)KM2

Ξ } where ev1 (r′) is r′[x⃗/s⃗] whose all subexpressions of

form ⟨p, γ(. . .)⟩(t1, . . . , tk) is replaced with ⟨p, Jγ(. . .)KM1⟩(t1, . . . , tk). The proof is by

inner induction on r′, where r′ is ordered firstly by the structure of ΛM1 trees (the

sentential forms of M1) contained in r′ and secondly by the structure of r′ itself.

If r′ = y, we have
∪

κ∈fz(r′,u)Jκ[x⃗/s⃗]KM×
Ξ = Ju[z/y]KM×

Ξ and {JuKM×
Ξ++(z 7→t) | t ∈Jev1 (r′)KM2

Ξ } = JuKM×
Ξ++(z 7→Ξ(y)), hence, these two sets are equal.

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 27

If r′ = δ(r1, . . . , rk), using the inner induction hypothesis k times, we have the

following equality:
∪

κ∈fz(r′,u)Jκ[x⃗/s⃗]KM×
Ξ = {Ju[z/δ(z1, . . . , zk)]KM×

Ξ++(z1 7→t1,...,zk 7→tk) |
ti ∈ Jev1 (ri)KM2

Ξ }, which is equal to {JuKM×
Ξ++(z 7→δ(t1,...,tk)) | ti ∈ Jev1 (ri)KM2

Ξ } and

therefore by definition of the IO-semantics equal to {JuKM×
Ξ++(z 7→t) | t ∈ Jev1 (r′)KM2

Ξ } as

desired.

Similarly if r′=⟨p, ⟨q, xi⟩⟩(r1, . . . , rk), using the inner induction hypothesis k times,

we have
∪

κ∈fz(r′,u)Jκ[x⃗/s⃗]KM×
Ξ ={Jlet z←⟨⟨p, q⟩, si⟩(z1, . . ., zk) inuKM×

Ξ++(z1 7→t1,...,zk 7→tk)|
ti ∈ Jev1 (ri)KM2

Ξ }. By the definition of the IO-semantics and by the fact u does not

contain any occurrences of z1, . . . , zk from definition, this is equal to {JuKM×
Ξ++(z 7→t) | t ∈J⟨⟨p, q⟩, si⟩(z1, . . . , zk)KM×

Ξ++(z1 7→t1,...,zk 7→tk)}, and by outer induction hypothesis equal to

{JuKM×
Ξ++(z 7→t) | t ∈ Jev1 (r′)KM2

Ξ }.
Finally, if r′ = ⟨p, γ(g⃗)⟩(t1, . . . , tk), again by using the inner induction hypothesis

k + 1 times, we have
∪

κ∈fz(r′,u)Jκ[x⃗/s⃗]KM×
Ξ =

∪
r′′∈Rp,γ

{JuKM×
Ξ++(z1 7→t1,...,zk 7→tk,z 7→t) |

ti ∈ Jev1 (ri)KM2
Ξ , t ∈ Jev1 (r′′[x⃗/g⃗, y⃗/z⃗])KM2

Ξ }, which is equal to
∪

r′′∈Rp,γ
{JuKM×

Ξ++(z 7→t) |
t ∈ Jev1 (r′′[x⃗/g⃗])KM2

Ξ++(y1 7→t1,...,yk 7→tk), ti ∈ Jev1 (ri)KM2
Ξ } and hence to {JuKM×

Ξ++(z 7→t) |
t ∈

∪
r′′∈Rp,γ

{Jev1 (r′′[x⃗/g⃗])KM2
Ξ++(y1 7→t1,...,yk 7→tk) | ti ∈ Jev1 (ri)KM2

Ξ }}. By definition of

IO-semantics, this is equal to {JuKM×
Ξ++(z 7→t) | t ∈ Jev1 (r′)KM2

Ξ }.

We can now generalize the lemma in two directions. First, we generalize the latter

transducer from MT to MM. Next, we relax the restriction that the former top-down

transducer must be total.

Lemma 2.11. DtT ; MM ⊆ MM. Totality and determinism are preserved.

Proof. By Lemma 6.9 of [Tha70], the class DtT is closed under the composition. Hence,

we have the following sequence of inequations that proves the lemma.

DtT ; MM ⊆ DtT ;LHOM ; MTIO ; LDtT by Theorem 2.8

⊆ DtT ;MTIO ; LDtT by Lemma 6.9 of [Tha70]

⊆ MM; LDtT by Lemma 2.10

⊆ MM by Lemma 2.9.

Lemma 2.12. DT ; MM ⊆ MM.

Proof. We have DT ⊆ DTFTA ; DtT (Lemma 5.22 of [EV85]) where DTFTA is the

class of partial identity translations recognized by deterministic top-down tree au-

tomaton, Lemma 2.11, and DTFTA ; MM ⊆ MM (can be proved by the same con-

struction for Lemma 5.21 of [EV85]. For every rule of the initial state, we add one

CHAPTER 2 MULTI-RETURN MACRO TREE TRANSDUCERS 28

let-binding that carries out the run of the automata.) These three lemmas prove

DT ;MM ⊆ MM.

2.6 Results

Using the lemmas proved up to here, we obtain the two main theorems: the char-

acterization of mr-mtts in terms of mtts and its closure properties.

Theorem 2.13. MM = LHOM ; MTIO ; LDtT. Determinism and totality are pre-

served between the mr-mtt and the mtt.

Theorem 2.14. MM is closed under left-composition with DT and right-composition

with DtT.

Chapter 3

Expressive Power of Multi-Return MTTs

A natural question that arises here is: what is the exact relationship between mtts

and mr-mtts in terms of expressiveness? It is known in the literature that mtts are

not closed under left-composition with LHOM’s, while mr-mtts are closed as we have

shown in the previous chapter. This immediately implies that mr-mtts are strictly more

powerful than mtts. Recall, however, that the closure under left-composition is already

achieved for a restricted class of mr-mtts, i.e., 1-MM. Therefore, what we can tell so

far is only that let bindings do add power for mtts in terms of expressiveness. How

about the multi-return facility? In this chapter, we give a formal proof of the fact that

1-MM (and hence MTIO) is not closed under right-composition with DtT’s. Together

with the results from the previous chapter, the result tells us that multi-return facility

also adds expressive power for mtts, in the form of right-compositionality.

3.1 Deterministic and Dimension-1 mr-mtts

First of all, let us summarize several results concerning expressiveness that are

immediately derived from the characterization given in the previous chapter. Recall

that we have DMM = LHOM ; DMT ; LDtT and DtMM = LHOM ;DtMT ; LDtT by

Theorem 2.13. Since, by Theorem 7.6 of [EV85], DMT and DtMT are both closed

under left- and- right- composition with DtT, we obtain the following corollary. (Note

that the right part follows also from the result of [EV94], that total deterministic tree

generating top-down tree-to-graph transducers (trgen-tg) are equivalent to DtMT,

because mr-mtts are a special case of trgen-tgs.)

Corollary 3.1. DMM = DMTIO and DtMM = DtMT.

Hence, for deterministic case, mtts and multi-return mtts are equally powerful.

29

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 30

The intuition is that each state in an mr-mtt returning a k-tuple of trees can be split

to k states each returning a single tree, and let bindings can be eliminated by simply

replacing each let-variable zi with the state call expression bound to it.

For mr-mtts that are nondeterministic but with their dimensions restricted to 1,

we obtain the following characterization from Lemma 2.7 and Lemma 2.10.

Corollary 3.2. 1-MM = LHOM; MTIO.

On page 123 of [EV85], a counterexample to show MTIO (LHOM ; MTIO is given

without proof. (The difficult part of their counterexample to be realized in MTIO

is the generation of two identical pairs of a nondeterministic relabeling of the input,

which is similar to our example given later that generates mutually reverse pair of

nondeterministic relabelings.) Thus, by this example we have the following theorem,

which shows that binding intermediate trees by let-expression itself adds expressiveness.

Theorem 3.3. MTIO (1-MM.

3.2 The Power of Multi-Return

Consider the following mr-mtt with the input alphabet {s(1), z(0)}, the output

alphabet {root(2), a(1), b(1), e(0), A(1), B(1), E(0)}, and the set of rules:

⟨q0, s(x)⟩()→ let (z1, z2)← ⟨q1, x⟩(A(E)) in root(a(z1), z2)

⟨q0, s(x)⟩()→ let (z1, z2)← ⟨q1, x⟩(B(E)) in root(b(z1), z2)

⟨q0, z⟩()→ root(e, E)

⟨q1, s(x)⟩(y2)→ let (z1, z2)← ⟨q1, x⟩(A(y2)) in (a(z1), z2)

⟨q1, s(x)⟩(y2)→ let (z1, z2)← ⟨q1, x⟩(B(y2)) in (b(z1), z2)

⟨q1, z⟩(y2)→ (e, y2)

This mr-mtt nondeterministically translates a string ss · · · ssz of length n to a root

node holding two strings of the same length n. The first string in the output consists

of symbols a and b and terminates by e. The second consists of A and B and terminates

by E. Moreover, the second string is always the reverse of the first, ignoring the case

and the leaf symbol (e or E).

Our claim is that this translation essentially requires the power of tuple-return

facility. To see that a naive attempt to realize it by a single-return fails, let us try

splitting the state q1 returning pairs of trees into two single-return states q1L and q1R

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 31

by syntactically rewriting every rule.

⟨q1L, s(x)⟩(y2)→ let z1 ← ⟨q1L, x⟩(A(y2)) in let z2 ← ⟨q1R, x⟩(A(y2)) in a(z1)

⟨q1L, s(x)⟩(y2)→ let z1 ← ⟨q1L, x⟩(B(y2)) in let z2 ← ⟨q1R, x⟩(B(y2)) in b(z1)

⟨q1L, z⟩(y2)→ E

⟨q1R, s(x)⟩(y2)→ let z1 ← ⟨q1L, x⟩(A(y2)) in let z2 ← ⟨q1R, x⟩(A(y2)) in z2

⟨q1R, s(x)⟩(y2)→ let z1 ← ⟨q1L, x⟩(B(y2)) in let z2 ← ⟨q1R, x⟩(B(y2)) in z2

⟨q1R, z⟩(y2)→ y2

Then, we have a different translation realized. That is, although the split version still

generates trees holding two strings (one with symbols a and b, and the other with A

and B), the two strings, this time, are not necessarily related (not always the reverse

of each other).

In fact, not only the split version of the above mr-mtt but any 1-dimensional mr-

mtt cannot realize this translation. We refer to the translation by twist throughout

this paper. More precisely, abbreviating k̄ for
k︷ ︸︸ ︷

s . . . s z, we define

twist = {(n̄, root(t, revUp(t))) | t ∈ (a|b)nE}

where:

revUp(x) = revUp′(x, E())

revUp′(a(x), y) = revUp′(x, A(y))

revUp′(b(x), y) = revUp′(x, B(y))

revUp′(e(), y) = y

Now, the goal of the rest of this section is to prove the following lemma, which takes

twist as a witness that the multi-return facility does add expressive power for mr-mtts

under nondeterminism.

Lemma 3.4. twist /∈ 1-MM.

The outline of the proof is as follows. We first reduce the problem to the non-

membership of MTIO, from that of 1-MM, i.e., we show that twist ∈ 1-MM only if

twist ∈ MTIO. Then, we suppose that an mtt realizes twist and derive a contradiction.

How we derive it is to show that the mtt that supposedly realizes twist yields a set of

outputs whose size has a polynomial upper bound with respect to the length of the

input string, while the size of twist ’s output set is actually exponential.

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 32

However, giving this upper bound directly is difficult since too many possibilities

need to be considered for the supposed mtt. For this reason, we introduce two re-

stricted forms, called weak normal form and (strong) normal form and use these as

follows. Given a sentential form that produces the desired outputs (in particular, the

one to start with, i.e., the initial procedure applied to an input n̄), we will convert

it to a weak normal form, and then to a set of normal forms. We can show that, in

the first conversion, the set of outputs is preserved and, in the second conversion, the

union set of outputs is either preserved or enlarged. We then give an upper bound for

the size of the final union set, which is also an upper bound for the original one.

Below, without loss of generality, we consider only mtts with input alphabet

Σ = {s(1), z(0)}, output alphabet ∆ = {root(2), a(1), b(1), e(0), A(1), B(1), E(0)}, Also,

we write On̄ to denote the output language of twist from a particular input n̄, i.e.,

On̄ = {root(t, revUp(t)) | t ∈ (a|b)ne}, and O to denote the output language from any

input, i.e., O =
∪

n≥0 On̄.

3.2.1 From 1-MM to MTIO

The only difference of 1-MM and MTIO is that the former can bind and copy

intermediate trees by let -expressions inside each rule. In other words, if an mr-mtt

of dimension 1 has no rule that uses some let -variable zi twice or more, then there

exists an equivalent mtt. For realizing the particular translation twist, we indeed do

not need parameter copying. This is because, in any output tree t ∈ O of twist , no two

different subtrees are equal. If there exists a rule of form let z ← f in · · · z · · · z · · · ,
then during the evaluation either the expression itself or of one occurrence of z must

be discarded; otherwise, the final output must contain an identical pair of subtrees

generated from the two occurrences of z, which cannot be a member of O.

Lemma 3.5. Let M be an mr-mtt (Q, q0, Σ, ∆, R) of dimension 1 realizing twist, and

let r ∈ Rq,σ be a right-hand side that has a let -variable z that occurs more than once

(excluding the binding occurrence). That is, r = l1 · · · lklet z ← f in κ with z occurring

in κ twice or more. Then, let M ′ be a new mr-mtt obtained from M by replacing r

with the new rule r′ = l1 · · · lklet z1 ← f in let z ← f in κ′ where κ′ is κ whose first

occurrence of z is replaced with z1. Then, if τM = twist, we have τM ′ = twist.

Proof. Let us assume a fixed input tree n̄. Let Un̄ be the set of all subtrees of On̄.

That is, Un̄ = On̄ ∪ {(a|b)ie | 0 ≤ i ≤ n} ∪ {(A|B)iE | 0 ≤ i ≤ n}. To prove the lemma,

it is sufficient to show the following statement: for any Γ, if Jlet z ← f in κKM
Γ ⊆ Un̄

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 33

then Jlet z ← f in κKM
Γ = Jlet z1 ← f in let z ← f in κ′KM ′

Γ . By definition,

Jlet z1 ← f in let z ← f in κ′KM
Γ =

∪
{Jκ′KM

Γ++(z1 7→t1,z 7→t) | t1 ∈ JfKM
Γ , t ∈ JfKM

Γ }

and

Jlet z ← f in κKM
Γ =

∪
{JκKM

Γ++(z 7→t) | t ∈ JfKM
Γ }

=
∪
{Jκ′KM

Γ++(z1 7→t,z 7→t) | t ∈ JfKM
Γ }

Thus, we obviously have Jlet z ← f in κKM
Γ ⊆ Jlet z1 ← f in let z ← f in κ′KM ′

Γ . For

the inverse inclusion, we show that it must be the case

Jκ′KM
Γ++(z1 7→t1,z 7→t) ⊆ Jκ′KM

Γ++(z1 7→t1,z 7→t1)
∪ Jκ′KM

Γ++(z1 7→t,z 7→t)

under the assumption Jlet z ← f in κKM
Γ ⊆ Un̄. Suppose not. Then, both z1 and z

must contribute to the final output, i.e., Jκ′KM
Γ++(z1 7→�1,z 7→�) must contain an output

tree that has both �1 and � in it. However, since this implies that Jκ′KM
Γ++(z1 7→t,z 7→t)

contains a tree that has two subtree equal to t, which contradict the assumption ⊆Un̄.

Hence we have Jlet z1 ← f in let z ← f in κ′KM ′

Γ ⊆ Jlet z ← f in κKM
Γ .

Repeating the operation defined in Lemma 3.5 for the innermost let -variables, we

can eventually obtain an mr-mtt that has no syntactic variable copying, and therefore

have the following lemma.

Lemma 3.6. twist ∈ 1-MM only if twist ∈ MTIO.

3.2.2 Conversion to Weak Normal Form

As in the following definition, a weak normal form is a sentential form whose each

subtree is either a desired output (On̄), a tree with no root(T∆\{root}), or a state call

that takes as arguments sentential forms producing some and only desired outputs.

Definition 3.7. Let M = (Q, q0, Σ, ∆, R) be an mtt realizing twist , and n̄ ∈ TΣ.

We define the set of weak normal forms W n̄
Λ ⊆ TΛ (recall Λ = ∆ ∪ (Q × TΣ)) as the

minimum set satisfying the following conditions:

• On̄ ∪ T∆\{root} ⊆W n̄
Λ

• v ∈W n̄
Λ if v = ⟨q(k), m̄⟩(v1, . . . , vk) and v1, . . . , vk ∈W n̄

Λ with ∅ (v↓⊆ On̄.

To show that a sentential form yielding only desired outputs can be converted to

an equivalent weak normal form, the following lemma is crucial. Intuitively, this states

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 34

that, when we know that such a sentential form contains a subtree r that derives a

tree t with no root, we do not have to consider other derivations starting from the

subtree r, that is, replacing the subtree r by its specific result t will not change the

set of outputs from the whole sentential form.

Lemma 3.8. Suppose M = (Q, q0, Σ, ∆, R) to be an mtt realizing twist. Let C be

a one-hole Λ-context and r be a tree in TΛ, such that C[r]↓ ⊆ O and r ⇒∗ t where

s ∈ T∆\{root}. Then C[r] ≡ C[t].

Proof. Choose any D ∈ C↓. By Prop 2.4, it must be the case that D[t] ∈ C[r]↓. Since

C[r]↓⊆ O and t ∈ T∆\{root}, the context D must be either in the form

• that does not contain any �1,

• root(· · ·�1 · · · , · · ·), or

• root(· · · , · · ·�1 · · ·).

In the first case, it is trivial that, for all t′ ∈ r↓, we have D[t′] = D = D[t]. In the

second case, by Prop 2.3, for all t′ ∈ r↓ we have D[t′] ∈ O. So here, revUp(t′) must be

equal to revUp(t). Since revUp is one-to-one mapping, this implies t′ = t, and thus we

conclude D[t′] = D[t]. The third case is similar to the second case, and again we have

D[t′] = D[t] for all t′ ∈ r↓. So in any cases, we have D[t′] = D[t] for all D ∈ C↓ and

s′ ∈ r↓. So C[r]↓= {D[t′] | D ∈ C↓, t′ ∈ r↓} = {D[t] | D ∈ C↓} = C[t]↓

By using the above lemma, we show that, after applying this replacement for all

such subtrees r as well as replacing all illegitimate trees (like a root containing a root

or an A containing a root) with a legitimate but nonce tree (E in the proof), we will

obtain a weak normal form.

Lemma 3.9. Suppose M = (Q, q0, Σ, ∆, R) to be an mtt realizing twist. For any

r ∈ TΛ where ∅ (r↓ ⊆ On̄ for some n̄ ∈ TΣ, there exists a tree wn̄(r) ∈W n̄
Λ such that

wn̄(r) ≡ r.

Proof. To obtain wn̄(r), we first apply the following translation to r repeatedly, until

subtrees satisfying the condition are not found.

• Find a subtree rc such that rc↓* On̄ ∪ T∆\{root}. If found, replace rc in r by E.

Since such rcs will never be contained in the final output, i.e., there is no context

D ∈ C↓ containing an occurrence of �1, where r = C[rc] and C is a one-hole context.

So replacing it by a nonce subtree E still yields an equivalent sentential form.

Next, we repeatedly apply the following translation.

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 35

• Find a subtree rc = ⟨q, m̄⟩(r1, . . . , rk) of r such that rc ⇒∗ t ∈ T∆\{root}. If

found, replace rc in r by s.

Since one iteration of this translation decreases the number of Q×TΣ nodes in r, this

process terminates. By Lemma 3.8, the result of this translation is equivalent to r.

Finally, we repeatedly apply the following translation.

• Find a subtree rc = ⟨q, m̄⟩(r1, . . . , rk) of r such that rc is an descendant of some

node of the form δ(· · ·) where δ ∈ ∆. If found, replace rc in r by E.

At this stage after the preceding two translation, it must be that rc ↓⊆ On̄. Again,

such rcs will never be contained in the final output. So replacing it by E still yields an

equivalent sentential form.

After these three translations, each subtree of form rc = ⟨q, m̄⟩(· · ·) does not

appear below δ(· · ·) nodes, and rc↓⊆ On̄. Also for each subtree of form rc = δ(· · ·),
we have rc↓⊆ On̄ ∪ T∆\{root}. Also by Prop 2.4, rc↓≠ ∅ for all subtrees rc of r, since

r↓̸= ∅. Thus the translated tree w(r) is now contained in W n̄
Λ .

3.2.3 Conversion to Normal Form

As in the following definition, a normal form is a sentential form that has a unique

procedure call at the root whose each argument is either a tree with no root or a

dummy tree and that yields only desired outputs.

Definition 3.10. Let M be an mtt realizing twist , and n̄ ∈ TΣ. We define the set of

normal forms N n̄
Λ ⊆W n̄

Λ as

N n̄
Λ = {v | v =⟨q(k), m̄⟩(t1, . . . , tk), q(k) ∈ Q, m̄ ∈ TΣ,

ti ∈ {dummyn} ∪ T∆\{root}, ∅ (v↓⊆ On̄}

where:

dummyn = root(
n︷ ︸︸ ︷

a · · · a e,
n︷ ︸︸ ︷

A · · · A E)

(We take here a dummy tree as the above, but it can be any tree if it is in On̄.)

Before showing that a weak normal form can be converted to a set of normal

forms, we give the following lemma. Intuitively, this states that if a sentential form

that derives only desired outputs can be split to a context with several holes and

desired output trees, then the context itself derives a hole or a desired output tree

without using any hole. (The lemma holds for not only weak normal forms but any

sentential forms.)

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 36

Lemma 3.11. Suppose M = (Q, q0,Σ, ∆, R) to be an mtt realizing twist, and n̄ ∈ TΣ.

Let C be a Λ-c-context such that C[t1, . . . , tc]↓ ⊆ On̄ for some t1, . . . , tc ∈ On̄. Then

C↓⊆ {�1, . . . ,�c} ∪On̄.

Proof. Suppose a ∆-contextD ∈ C↓ such thatD /∈ {�1, . . . ,�c}∪On̄. By the condition

C[t1, . . . , tc]↓ ⊆ On̄, it must be the case D[t1, . . . , tc] ∈ On̄ (by Prop 2.3). Since the

root node of every tree in On̄ is root and D /∈ {�1, . . . ,�c} by the assumption, the

root node of D is root. Also by the assumption D /∈ On̄, for some 1 ≤ i ≤ n, the hole

�i is a part of D. So, D[t1, . . . , tc] contains ti as a subtree. Hence, the tree D[t1, . . . , tc]

contains at least two root nodes, one at the root position and the other at the position

of ti. This implies D[t1, . . . , tc] /∈ On̄, which is a contradiction.

Conversion from a weak normal form to a set of normal forms works as follows.

Recall that a weak normal form is a tree of procedure calls where each leaf is either

from On̄ or from T∆\{root} and each procedure call derives an output tree from On̄.

We repeat the following. If the root procedure call of a weak normal form v has other

procedure calls as arguments, e.g.,

v = ⟨q, m̄⟩(⟨q′, m̄′⟩(. . .), ⟨q′′, m̄′′⟩(. . .), t)

(where the arguments are two calls and a tree from T∆\{root}) then the previous lemma

ensures that the root call results in either a result of one of the inner calls or a result

of the root call without using the inner calls. Thus,

v↓ ⊆ ⟨q′, m̄′⟩(. . .)↓ ∪ ⟨q′′, m̄′′⟩(. . .)↓ ∪ (⟨q, m̄⟩(�1, �2, t)↓ ∩On̄)

By repeating this “expansion” on the first and second clauses, the result set of v can

be bounded by the union of clauses like the third clause above, that is, the results

of any procedure calls appearing in v without using any of its inner procedure call

arguments (more precisely, in fact, any argument deriving an output in On̄). Note

that the results of each clause like the third clause above are further bounded by the

call form where each hole is replaced by the dummy tree defined above, like

⟨q, m̄⟩(dummyn, dummyn, s).

We take the set of all such forms constructed from the original weak normal form as

the set of the converted normal forms.

Lemma 3.12. Suppose M = (Q, q0, Σ, ∆, R) to be an mtt realizing twist. Let n̄ ∈ TΣ.

There are mappings NQ : W n̄
Λ → P(N n̄

Λ) and NV : W n̄
Λ → P(T∆) such that, for any

v ∈W n̄
Λ ,

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 37

• v↓⊆
∪
{u↓| u ∈ NQ(v)} ∪NV (v)

• |NQ(v)| ≤ the number of Q× TΣ nodes in v

• |NV (v)| ≤ the number of maximal ∆ nodes in v

Here, a maximal ∆ node means a node that is labeled by an element of ∆ and no

symbol of ∆ occurs further up in v.

Proof. We take NQ and NV as follows:

NQ(v) = {Rvs [dummyn, . . . , dummyn] |

vs = ⟨q(k), m̄⟩(v1, . . . , vk) is a subtree of v}

NV (v) = {vδ | vδ is a maximal subtree of v labeled by ∆}

where Rvs is a Λ-k-context defined as follows:

Rvs = ⟨q(k), m̄⟩(α1, . . . , αk)

where αi = �i if ∅ (vi↓⊆ On̄, or αi = vi otherwise

Intuitively, Rvs is a context obtained from vs by opening holes at the position of the

children that generate On̄ trees. The size conditions and NV (v) ⊆ T∆ immediately

follow from the definition of NQ and NV .

Since v ∈W n̄
Λ , every subtree vs of v that has the form ⟨q(k), m̄⟩(v1, . . . , vk), it is that

∅ (vs↓⊆ On̄. So by Lemma 3.11 and Prop 2.4, we have Rvs↓ ⊆ {�1, . . . ,�k} ∪ On̄.

Thus, for all u = Rvs [dummyn, . . . , dummyn] ∈ NQ(v), it must be the case u↓⊆ On̄,

which implies that NQ(v) ⊆ N n̄
Λ .

The inclusion v ↓⊆
∪
{u ↓| u ∈ NQ(v)} ∪ NV (v) is proved by induction on the

structure of v. Base case is the case when v ∈ On̄ ∪ T∆\{root}. Since v↓= {v} and

v ∈ NV (v) in this case, the inclusion trivially holds. The essential case is when v is in

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 38

the form ⟨q(k), m̄⟩(v1, . . . , vk) ∈W n̄
Λ where v1, . . . , vk ∈W n̄

Λ and ∅ (v↓⊆ On̄.

⟨q(k),m̄⟩(v1, . . . , vk)↓

⊆ {D[v′
1, . . . , v

′
k] | D ∈ {�1, . . . ,�k} ∪ (Rv↓ ∩On̄), v′i ∈ vi↓}

by Prop 2.4 and Lemma 3.11

= v1↓ ∪ · · · ∪ vk↓ ∪(Rv↓ ∩On̄)

⊆ v1↓ ∪ · · · ∪ vk↓ ∪Rv[dummyn, . . . , dummyn]↓

Since �i does not contribute any outputs in On̄, substitution with

dummyn is safe.

⊆
k∪

i=1

(∪
{u↓| u ∈ NQ(vi)} ∪NV (vi)

)
∪Rv[dummyn, . . . , dummyn]↓

by I.H.

⊆
∪
{u↓| u ∈ NQ(v)} ∪NV (v) by definition of NQ and NV

3.2.4 Polynomial Upper Bound

The proof for the polynomial upper bound roughly goes as follows. First, we can

consider a series of sets of normal forms given as follows. We start with taking the set

of normal forms of the weak normal forms of the initial sentential form. Each normal

form here has the form ⟨q, n̄⟩(. . .). We take a one-step derivation. The resulting

sentential form is not a normal form, and therefore we again take the set of normal

forms of the weak normal form of this. Each normal form must now have the form

⟨q, n− 1⟩(. . .). By repeating this, we obtain n + 1 sets of normal forms.

The above way of taking a series of sets of normal forms does not, however, en-

sure that the size of each set is polynomial and might actually grow exponentially.

For this reason, each time we take a set of normal forms, we only choose the set of

representatives, namely, only one procedure call for each pair of state and symbol.

The next lemma is crucial to justify this. It intuitively states that if two normal

forms are procedure calls with the same pair of state and input node, then no matter

what arguments they have, the sets of trees produced by them are almost the same

where the size of the difference is bounded by a constant not dependent on n. By

using this, Lemma 3.14 will show that taking only the representatives leaves only a

polynomial number of remainders.

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 39

Lemma 3.13. Suppose M = (Q, q0, Σ, ∆, R) to be an mtt realizing twist. Let n̄ ∈ TΣ.

Let v = ⟨q, m̄⟩(t1, . . . , tk) and v′ = ⟨q, m̄⟩(t′1, . . . , t′k) both in N n̄
Λ . Then we have

|v↓ \ v′↓| ≤ k(k − 1)

Proof. Let C be a context ⟨q, m̄⟩(�1, . . . ,�k). Then by Prop 2.3, we have

v↓ \ v′↓ = {D[t1, . . . , tk] | D ∈ C↓} \ {D[t′1, . . . , t
′
k] | D ∈ C↓}

⊆ {D[t1, . . . , tk] | D ∈ C↓,D[t1, . . . , tk] ̸= D[t′1, . . . , t
′
k]}

We show the size of the last set is less than or equal to k(k − 1).

For all D ∈ C↓, we have D[t1, . . . , tk] ∈ t↓⊆ On̄ and D[t′1, . . . , t
′
k] ∈ t′↓⊆ On̄. So D

must have either one of the following forms:

1. D = �i for some i such that ti = t′i = dummyn.

2. D ∈ On̄.

3. D = root(D1[�i], tD) where D1 is a one-hole context, tD ∈ T∆\{root} and for

some i such that ti, t
′
i ∈ T∆\{root}

4. D = root(tD,D1[�i]) where D1 is a one-hole context, tD ∈ T∆\{root} and for

some i such that ti, t
′
i ∈ T∆\{root}.

5. D = root(D1[�i],D2[�j]) where D1 and D2 are one-hole contexts, for some i, j

such that i ̸= j and ti, tj , t
′
i, t

′
j ∈ T∆\{root}.

In the case 1 and case 2, trivially D[t1, . . . , tk] = D[t′1, . . . , t
′
k] holds. In the case 3,

by the definition of On̄, it must be the case that revUp(D1[ti]) = tD = revUp(D1[t′i]).

Since revUp is a one-to-one mapping, we can conclude ti = t′i. Hence, D[t1, . . . , tk] =

D[t′1, . . . , t
′
k]. The case 4 is similar.

In the case 5, by definition of On̄, the lengths of D1[ti], D2[tj], D1[t′i], and D2[s′j] are

all equal to n. So it must be that length(ti) = length(t′i) and length(tj) = length(t′j),

where length(t) denotes the number of rank-1 nodes in s. Also by the definition of

On̄, we have revUp(D1[ti]) = D2[tj] and revUp(D1[t′i]) = D2[t′j]. So the reverse of ti is

being the prefix of D2[tj].

Here, we consider two cases, namely: the case length(ti) + length(tj) ≤ n and the

case length(ti)+ length(tj) > n. For the former case, length(ti) is less than or equal to

length(D2). So ti must be the reverse of a prefix of D2. Since exactly the same thing

holds for t′i, we can conclude ti = t′i, and similarly tj = t′j . So in this case, again we

have D[t1, . . . , tk] = D[t′1, . . . , t
′
k]. For the latter case, since length(ti) > length(D2),

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 40

the context D2 is being a prefix of the reverse ofti. Thus, D2 is uniquely determined

from ti and the length of tj . By a similar argument, we also have that D1 is uniquely

determined from tj and the length of ti. So for a specific i and j, the corresponding

context D of the 5th form is determined uniquely. Since the number of ways to choose

two numbers i and j from 1 · · · k is k(k−1), the number of the contexts D in this form

is at most k(k − 1).

So by the argument above, we can conclude that the number of context that satisfies

D[t1, . . . , tk] ̸= D[t′1, . . . , t
′
k] is at most k(k − 1). This proves the lemma.

Lemma 3.14. Suppose M = (Q, q0, Σ, ∆, R) to be an mtt realizing twist. Let n̄ ∈ TΣ.

For all N ⊆ N n̄
Λ , there exist sets N ′ and D satisfying the following conditions:

• N ′ ⊆ N n̄
Λ such that |N ′| ≤ (m + 1)|Q|, where m is the maximum number such

that m̄ is contained in N .

• D ⊆ On̄ such that |D| ≤ K(K − 1)|N |, where K is the maximum rank of states

in Q.

•
∪
{m↓| m ∈ N} =

∪
{n′↓| n′ ∈ N ′} ∪D.

Proof. Let rep : Q×TΣ → N be any partial function that rep(q, m̄) returns an element

of N whose root is ⟨q, m̄⟩. We extend rep to N n̄
Λ and take N ′ as {rep(n) | n ∈ N}. Since

the size of the domain of rep is less than or equal to (n+1)|Q|, we have |N ′| ≤ (n+1)|Q|.
Here, we take D as

D =
∪
{n↓| n ∈ N} \

∪
{n′↓| n′ ∈ N ′}

=
∪
{n↓| n ∈ N} \

∪
{rep(n)↓| n ∈ N}

⊆
∪
{(n↓ \rep(n)↓) | n ∈ N}

By Lemma 3.13, we have |n↓ \rep(n)↓ | ≤ K(K − 1). Hence, the size of D is less

than or equal to K(K − 1)|N |. The last equation in the statement is satisfied by the

definition of D.

The following lemma then proves that, at each step, the set of normal forms and

the set of remainders produced there both have polynomial sizes.

Lemma 3.15. Suppose M = (Q, q0,Σ, ∆, R) to be an mtt realizing twist. Let n̄, m̄ ∈
TΣ. S be a set of trees in N n̄

Λ and each member of S has the form ⟨q, m̄⟩(· · ·) for some

q ∈ Q. Then there is sets SD′ ⊆ On̄ and SN ′ ⊆ N n̄
Λ whose each member has the form

⟨q, m− 1⟩(· · ·) for some q ∈ Q, such that

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 41

•
∪
{n↓| n ∈ S} ⊆

∪
{n′↓| n′ ∈ SN ′} ∪ SD

• |SN ′ | ≤ m|Q|

• |SD′ | ≤ (1 + K(K − 1))H|S||R|

where H is the maximum number of subtrees contained in the right hand side of rules

in R.

Proof. Let Sx be {t | s⇒ t, s ∈ S}. Then we have |Sx| ≤ |R||S|, and by definition of

↓, we have
∪
{s↓| s ∈ S} =

∪
{s↓| s ∈ Sx}.

Let SW = {w(s) | s ∈ Sx, s↓ ̸= ∅} where w is the function whose existence is

proved in Lemma 3.9. Then we have SW ⊆W n̄
Λ and

∪
{s↓| s ∈ Sx} =

∪
{s↓| s ∈ SW }

by the lemma. Since the size |SW | is less than or equal to |Sx|, we have |SW | ≤ |S||R|.
Let SQ =

∪
{NQ(s) | s ∈ SW } and SV =

∪
{NV (s) | s ∈ SW } where NQ and NV

are the functions in Lemma 3.12. Then by the lemma we have SQ ⊆ N n̄
Λ , SV ⊆ T∆,

and
∪
{s↓| s ∈ SW } ⊆

∪
{v↓| v ∈ SQ} ∪ SV . The sizes of the sets is, by the lemma,

|SQ| ≤ H|S||R| and |SV | ≤ H|S||R|.
Finally, let SN ′ and SD be the sets that the existence of them is assured by

Lemma 3.14 by taking SQ as N . Then by the lemma we have |SN ′ | ≤ m|Q|, |SD| ≤
K(K − 1)H|S||R|, and

∪
{v↓| v ∈ SQ} =

∪
{s↓| s ∈ SN ′} ∪ SD.

Note that all procedure calls in trees in Sx must have the form ⟨q, m− 1⟩(· · ·),
by the definition of ⇒, which also holds for trees in SN ′ , by the construction of all

preceding lemmas (for the case m = 0, the set Sx does not contain any procedure

calls, and thus SQ, S′
N , and SD becomes empty). Let SD′ = (SV ∩ On̄) ∪ SD. Then

by SN ′ and SD′ , all conditions in the statement are satisfied.

Putting the preceding lemmas in this section altogether, we obtain the following

corollary, which poses a polynomial upper bound on the size of the output language

of an mtt that realizes twist .

Corollary 3.16. Suppose M = (Q, q0, Σ, ∆, R) to be an mtt realizing twist. Let

n̄ ∈ TΣ. Then

|⟨q0, n̄⟩()↓ | ≤ (n + 1)2(1 + K(K − 1))H|Q||R|

Proof. Let Sn = {⟨q0, n̄⟩()} ⊆ N n̄
Λ . Let Si and Di be the sets whose existence is

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 42

assured by the preceding lemma by taking Si+1 as S. Then by the lemma,

|⟨q0, n̄⟩()↓ | ≤|
n∪

i=0

Di−1|

≤
n∑

i=0

(1 + K(K − 1))H|Si||R|

≤
n∑

i=0

(1 + K(K − 1))H(i + 1)|Q||R|

≤
n∑

i=0

(1 + K(K − 1))H(n + 1)|Q||R|

=(n + 1)2(1 + K(K − 1))H|Q||R|

The corollary, however, leads to a contradiction, recalling that the size of twist ’s

output set is actually exponential. Hence there exists no mtt realizing twist , proving

the goal of this section.

Lemma 3.17. twist /∈ MTIO

Proof. In order for an mr-mtt M of dimension 1 to realize the twist translation, by

Lemma 3.5, there must be an mtt M ′ realizing twist . Then, from Corollary 3.16 it

must be that |⟨q0, n̄⟩()↓ | = |On̄|. However, |On̄| = 2n. The corollary implies that an

inequation 2n ≤ (n + 1)2(1 + K(K − 1))H|Q||R|, which does not hold when we take

sufficiently large n.

Proof of Lemma 3.4. Immediately follows from Lemmas 3.6 and 3.17.

3.3 Results

As shown in the beginning of the previous section, we have twist ∈ 2-MM. Note

that the composition MTIO ; DtT can also realize twist . Let M be an mtt with the

rules

⟨q0, s(x)⟩ → a(⟨q1, x⟩(A(E))) ⟨q1, s(x)⟩(y)→ a(⟨q1, x⟩(A(y)))

⟨q0, s(x)⟩ → b(⟨q1, x⟩(B(E))) ⟨q1, s(x)⟩(y)→ b(⟨q1, x⟩(B(y)))

⟨q0, z⟩ → e ⟨q1, z⟩(y)→ y

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 43

and N be a total deterministic tt with the rules

⟨p0,a(x)⟩→root(a(⟨p1,x⟩),⟨p2,x⟩) ⟨p1,a(x)⟩→a(⟨p1,x⟩) ⟨p2,a(x)⟩→⟨p2,x⟩

⟨p0,b(x)⟩→root(b(⟨p1,x⟩),⟨p2,x⟩) ⟨p1,b(x)⟩→b(⟨p1,x⟩) ⟨p2,b(x)⟩→⟨p2,x⟩

⟨p0,A(x)⟩→root(e, E) ⟨p1,A(x)⟩→e ⟨p2,A(x)⟩→A(⟨p2,x⟩)

⟨p0,B(x)⟩→root(e, E) ⟨p1,B(x)⟩→e ⟨p2,B(x)⟩→B(⟨p2,x⟩)

⟨p0,E⟩→root(e, E) ⟨p1,E⟩→e ⟨p2,E⟩→E.

Then we have τIO,M ; τN = twist . Hence, by Lemma 3.4, we have the following two

theorems; the strict inclusion between 1-MM and 2-MM, and non-closure under right-

composition of normal IO-mtts.

Theorem 3.18. MTIO (1-MM (2-MM.

Theorem 3.19. MTIO ; DtT ̸⊆ MTIO.

Note that twist can also be realized by an OI-mtt followed by a total deterministic

tree transducer, namely, twist = τOI,M ; τN by the above mtt M ; it realizes the same

translation in both IO- and OI- semantics, because it has no nested state calls. In

fact, our proof that twist cannot be realized by an IO-mtt can even be applied to

OI-mtts with a little modification. Note that Prop 2.3 also holds in OI (a special case

of Lemma 3.20 of [EV85]), while Prop 2.4 is not. Instead, we have by Lemma 3.20

of [EV85] the following relation: C[r1, . . . , rn]↓OI = {D ←−
OI

[ri ↓OI, . . . , rn ↓OI] | D ∈
C↓OI} where ←−

OI
[L1, . . . , Ln] denotes so-called OI-substitution that substitutes each

occurrence of �i with independent element from Li. In particular, when D has no

occurrence of �i, the result of substitution is not necessary empty even if Li is.

Regarding this difference, we have to modify the definition of weak normal form

so that it allows subexpression v to be v↓OI= ∅. That is, weak normal form is defined

for the OI-case as follows:

• On̄ ∪ T∆\{root} ⊆W n̄
Λ

• v ∈W n̄
Λ if v = ⟨q(k), m̄⟩(v1, . . . , vk) and v1, . . . , vk ∈W n̄

Λ with v↓OI⊆ On̄.

Note the difference from IO-case that we do not have the condition “∅ (” now. Then,

by the same proof as Lemma 3.9, we can obtain the weak normal form for each OI

sentential forms; this is because the only point we have essentially used 2.4 is to prove

non-emptiness (the first line of the proof of Lemma 3.8 can also be derived from the

OI version of Prop 2.4).

CHAPTER 3 EXPRESSIVE POWER OF MULTI-RETURN MTTS 44

The definition of normal form is modified as follows to allow subexpressions gen-

erating the empty set:

N n̄
Λ = {v | v =⟨q(k), m̄⟩(t1, . . . , tk), q(k) ∈ Q, m̄ ∈ TΣ,

ti ∈ {θ} ∪ {dummyn} ∪ T∆\{root}, ∅ (v↓⊆ On̄}

where θ is an arbitrary sentential form such that θ↓OI= ∅ (in the case there is no such

sentential form, we first add a new state p with no rules to the mtt, and take ⟨p, 0̄⟩
as θ). Then by a similar proof as Lemma 3.12, we can construct the normal form. In

the construction of the normal form, we change the definition of the context Rvs as

follows:

Rvs = ⟨q(k), m̄⟩(α1, . . . , αk) where αi =

θ if vi↓OI= ∅

�i if ∅ (vi↓OI⊆ On̄

vi otherwise

Then by the same argument as Lemma 3.11, we are able to show that Rvs ↓OI is

contained in {�1, . . . ,�k}∪On̄, if intersected with the set of contexts that do not have

any occurrence of �i such that αi = θ. Hence, by the same inductive proof we obtain

the normal form. This normal form also yields the same polynomial upperbound on

the number of the outputs; the size condition corresponding to Lemma 3.13 of the IO-

case is proved by the same (five) case analysis but taking D as each element from C↓OI

such that there is no occurrence of �i for i with ti = θ. The subsequent estimation

of the number of the outputs goes exactly as same as for the IO-case. Altogether, we

have the following result.

Theorem 3.20. MTOI ; DtT ̸⊆ MTOI.

As a concluding remark, we would like to point out that the twist translation is an

example showing the following theorem, which is conjectured on page 95 of [Voi05].

Theorem 3.21. Let LSI be the class of translations of linear-size increase, i.e., LSI =

{τ | ∃c ∈ N : ∀(s, t) ∈ τ : |t| ≤ c|s|}. (LSI ∩MTµ) ; (LSI ∩MTµ) ((LSI ∩MTµ). for

µ ∈ {IO, OI}.

Proof. While obviously τµ,M , τN ∈ LSI ∩MTµ, we have τµ,M ; τN = twist /∈ MTµ.

Note that for total deterministic mtts of linear-size increase, it is known that

the composition hierarchy collapses, i.e., (LSI ∩ DtMT) ; (LSI ∩ DtMT) ⊆ (LSI ∩
DtMT) [Man03].

Chapter 4

Complexities on Single MTTs

Macro tree transducers have many decidable properties such as exact typechecking,

emptiness and finiteness and membership of their domains as well as ranges. These

make mtts a useful device for static verification of XML translation programs. In the

algorithms that decide such properties, we sometimes encounter as a sub-problem the

“translation membership problem”. For a fixed translation, the translation member-

ship problem asks whether a given input/output pair is an element of the translation.

Although the problem itself seems simple, effectively solving it is far beyond trivial,

in particular if we consider nondeterministic mtts. In this chapter, we investigate

the complexity of translation membership problem for both IO- and OI- mtts. For

OI-mtts this problem is shown to be NP-complete and in DSPACE(n). On the other

hand, translation membership for IO-mtts is shown to be solvable in polynomial time.

For several extensions, such as addition of regular look-ahead or the generalization to

multi-return mtts, it is shown that translation membership still remains in PTIME.

4.1 Definitions

For a translation τ ⊆ TΣ × T∆, the translation membership problem for τ is a

decision problem that determines, given a tree s ∈ TΣ and a tree t ∈ T∆, whether

(s, t) ∈ τ . In the rest of the paper, we focus on the data complexity of this problem.

That is, we measure the complexity in terms of |s| + |t|, regarding the translation τ

to be fixed. We will always assume that the input and output tree that are inputs to

the problem are denoted by “s” and “t”.

45

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 46

4.2 Translation Membership for OI-MTTs

4.2.1 Lowerbound

The first result is that translation membership for OI-mtts is NP-hard, even for

linear mtts. The proof is based on the reduction to 3-SAT, which resembles [Rou73]

which shows NP-completeness of the membership problem for indexed languages.

Lemma 4.1. Translation membership for LMTOI (and hence MTOI) is NP-hard.

Proof. We construct an mtt M = (Q, q0, Σ,∆, R) so that it generates the parse-trees of

all satisfiable boolean formulas in 3-conjunctive normal form, given the number of vari-

ables n and clauses m as the inputs. We slightly abuse our notation and write yv, yt, yf

in place of y1, y2, y3, respectively. Let Q = {q(0)
0 , q

(2)
c , q(3)}, Σ = {a(1), b(3), c(1), d(0)},

∆ = {∧(2),∨(3),¬(1), v(1), e(0)}, and R the following set of rules:

⟨q0, a(x1)⟩ → ⟨q, x1⟩(v(e), e,¬(e))

⟨q0, a(x1)⟩ → ⟨q, x1⟩(v(e),¬(e), e)

⟨q, b(x1, x2, x3)⟩(yv, yt, yf)→ ⟨q, x1⟩(v(yv), ⟨qc, x2⟩(yt, yv), ⟨qc, x3⟩(yf ,¬(yv)))

⟨q, b(x1, x2, x3)⟩(yv, yt, yf)→ ⟨q, x1⟩(v(yv), ⟨qc, x2⟩(yt,¬(yv)), ⟨qc, x3⟩(yf , yv))

⟨qc, d⟩(y1, y2)→ y1

⟨qc, d⟩(y1, y2)→ y2

⟨q, c(x1)⟩(yv, yt, yf)→ ∧(∨(yt, yt, yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf)→ ∧(∨(yt, yt, yf), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf)→ ∧(∨(yt, yf , yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf)→ ∧(∨(yf , yt, yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf)→ ∧(∨(yt, yf , yf), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf)→ ∧(∨(yf , yf , yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf)→ ∧(∨(yf , yt, yf), ⟨q, x1⟩(yv, yt, yf))

⟨q, d⟩(yv, yt, yf)→ ∨(yt, yt, yf)

... (same as the ∨(· · ·) part of ⟨q, c⟩-rules)

⟨q, d⟩(yv, yt, yf)→ ∨(yf , yt, yf).

From an input tree a(

n︷ ︸︸ ︷
b(b(· · · b(cmd, d, d) · · ·), d, d)) of size 3n + m + 2, it generates

all satisfiable boolean formulas in 3-conjunctive normal form with n variables and

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 47

m conjuncts. The output language encodes boolean formulas as follows: a boolean

variable pi for 0 ≤ i < n is represented as vie, and three boolean operations ¬, ∧, and

∨ are represented as they are. For example, the formula (p0∨¬p1∨p2)∧(¬p0∨p1∨p2)

is encoded as ∧(∨(e,¬ve, vve),∨(¬e, ve, vve)).
Intuitively, when the mtt reads the root node of the input, it nondeterministically

assigns a truth-value to the first variable p0. The first ⟨q0, a⟩-rule is the case when

it assigned ‘true’ and the other rule is for ‘false’. Three parameters are passed to

the state q. Intuitively, the first parameter yv denotes the name of the next variable

to be assigned a truth-value. The second (and the third, respectively) parameter yt

(yf) denotes the set of ‘true’ (‘false’) literals (namely, variables or negated variables)

that have been constructed up to now. While reading b nodes in the state q, the

mtt nondeterministically assigns a truth-value to each variable p1 to pn−1, similarly

to p0. Here, OI-nondeterminism is crucially used to represent arbitrary choice of

positive and negative literals; each time yt and yf are copied to the output, they

contain unevaluated “combs” of qc-calls (on d-nodes). Each such comb represents

the nondeterministic choice of any of the positive (yt) or negative (yf) literals that

have been generated so far. The state qc means a union of two sets, by taking two

parameters and nondeterministically returns either one of them. The parameter yt is

assigned an unevaluated expression, e.g., like ⟨qc, d⟩(⟨qc, d⟩(¬p0, p1), p2), and each time

the value of yt is needed, it is nondeterministically evaluated to either ¬p0, p1, or p2.

Then, while reading c nodes in the input, the transducer generates m conjunctions of

‘true’ clauses. Since we generate 3-CNF formulas, each clause consists of a disjunction

of exactly three literals. There are seven possibilities (all combinations of yt and yf ,

except ∨(yf , yf , yf)), which are generated by the ⟨q, c⟩-rules of the transducer.

It should be clear for the reader that this mtt generates all (and only) satisfiable 3-

CNF formulas; it nondeterministically constructs any of the 2n possible assignments to

the variables p0, . . . , pn−1, and under each assignment, generates any of the possible 7m

types of ‘true’ formulas. The point is, the choices at ⟨qc, d⟩ for enumerating all possible

literals are nondeterministically evaluated each time generating a disjunct, while the

choices at ⟨q0, a⟩ and ⟨q, b⟩ for enumerating all possible truth-value assignments are

evaluated and uniformly determined prior to the generation of all conjuncts.

It is also obvious that, given any 3-CNF formula, we can in polynomial time encode

the formula to the above explained encoding to obtain t, and count the number of

variables and clauses to obtain s. Then, (s, t) ∈ τOI,M if and only if the original

formula is satisfiable. It is well known that the satisfiability of 3-CNF is NP-complete

(see, e.g., [GJ79]).

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 48

4.2.2 Upperbounds

We prove two more results on the translation membership problem of linear mtts

in OI-mode. The first result is that the NP lower bound is tight, i.e., the problem

is in fact NP-complete. The second result concerns space complexity. We prove that

the problem can be solved in deterministic linear space (DSPACE(n)). Actually, the

same upperbound holds also for mtts that are not necessary linear, and moreover, even

for finite compositions of mtts. Since the proof for general mtts requires as a basis

the complexity result for linear mtts, in this section, we focus only on linear mtts,

which have their own interest. The complexity bound of the translation membership

for general mtts and their compositions are shown later in Chapter 5.

Overview Compared to the proof of the NP-hardness lowerbound, giving the up-

perboud complexity result requires much more involved techniques. Our approach to

show NP and DSPACE(n) complexity for the translation membership is summarized

as follows. First, given a linear mtt M , we convert it to a total deterministic mtt

N , whose unique output tree τN (s) symbolically denotes the set of all output trees

{t | t ∈ τOI,M (s)} of M . We call the output trees of τN choice trees. The translation

membership (s, t) ∈ τM now reduces to the problem that asks whether the choice tree

t′ = τN (s) contains t. Here, if it were the case |t′| = O(|s|+ |t|), we could simply com-

pute t′ (using the linear time/space algorithm for total deterministic mtts [Man02])

and then recursively compare with t to obtain NP and DSPACE(n) algorithm. How-

ever, this is not necessary the case: |t′| may be much larger than |s|+ |t|. To overcome

this difficulty, we exploit the compressed representation of mtt outputs introduced

in [MB04, BLM08]. In the compressed representation, each node of the output tree

can be represented by a O(|s|) size data structure, no matter how large the actual

output tree is. On the compressed representation of [MB04, BLM08], we can obtain

its label in constant time and its child nodes in O(|s|) time. In the following, we extend

the representation specifically for the case of choice trees generated from linear mtts,

and enable obtaining parent node also in O(|s|) time, which allows O(|s| + |t|) space

comparison between the choice tree t′ and the given output tree t.

Two previous works on the same membership problem for restricted classes of

macro tree transducers – for total deterministic mtts [Man02] and for nondeterministic

mtts without parameters (top-down tree transducers) [Bak78] – both give DSPACE(n)

algorithms. First let us briefly explain where the difficulty arises in our case, i.e.,

with nondeterminism and parameters. For total deterministic mtts, the DSPACE(n)

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 49

complexity is proved via a reduction to the case of linear total deterministic mtts,

and then to attribute grammars (which are deterministic by default), whose output

languages are LOG(CFL)-complete and therefore have DSPACE(log(n)2) membership

test [Eng86]. For nondeterministic tts, the complexity is achieved by a straightforward

backtracking-based algorithm; given the input tree s and the output tree t, it generates

each possible output of s by simulating the recursive execution of state calls, while

comparing with t. The following two facts imply the DSPACE(n) complexity: (1) the

depth of the recursion is at most the height of s, and (2) to backtrack we only need to

remember for each state call the rule that was applied (which requires constant space).

Note that neither (1) nor (2) holds for mtts; the recursion depth can be exponential

and the actual parameters passed to each state call must also be remembered for

backtracking. Our choice that we first focus only on linear mtts rather than general

mtts is, to avoid those difficulties. As we will show shortly, the depth of the recursion

linear mtts can carry out is linearly bounded by the size |s| of the input tree, which is

much smaller than exponential of |s|. Also, the linearity is shown to allow a concise

representation of backtracking information. Then in Chapter 5, the complexity for

general mtts is given by using further proof techniques.

MTT with Choice and Failure For a technical reason, we prove the result on a

slight extension of macro tree transducers, called macro tree transducers with choice

and failure (mttcf). We fix the alphabet C = {θ, +} distinct from all other alphabets.

Definition 4.2. An mtt with choice and failure (mttcf) M is a tuple (Q, Σ, ∆, q0, R)

defined as for normal mtts, except that the right-hand sides of rules are trees in

T∆∪(Q×Xk)∪C(Ym). For µ ∈ {IO,OI}, the big-step semantics J· · ·KM
µ , the small-step

semantics →µ,M and ↓µ,M , and the realized translation (τµ,M) are defined similarly

as for mtts, with additional rules: J+(t1, t2)KM
µ,Γ = Jt1KM

µ,Γ ∪ Jt2KM
µ,Γ, JθKM

µ,Γ = ∅,
+(t1, t2)→µ,M t1, and +(t1, t2)→µ,M t2.

For a right-hand side r of an mttcf, we say a position i ∈ V (r) is top-level if for all

proper prefixes j of i, label(r, j) ∈ ∆ ∪ C. We say an mttcf is canonical if for every

right-hand side r and for every top-level position i ∈ V (r), label(r, i) /∈ C.

Intuitively, + denotes nondeterministic choice and θ denotes failure (because there

is no output tree in JθK). The idea of the choice and failure nodes come from [EV85];

there they show that MTOI = DtMT ; SET, where SET is the class of translations

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 50

set∆ ∈ T∆∪C × T∆ with

set∆(θ) = ∅

set∆(+(c1, c2)) = set(c1) ∪ set(c2)

set∆(δ(c1, . . . , ck)) = {δ(t1, . . . , tk) | ti ∈ set∆(ci)} for δ ∈ ∆.

Let us briefly summarize the proof. For any mttcf (or mtt) M , we can always construct

a total deterministic mttcf M ′ that realizes the same translation, by taking the ⟨q,σ⟩-
rule of M ′ as ⟨q,σ(· · ·)⟩(· · ·)→+(r1, +(r2, . . . ,+(rn, θ) · · ·)) where {r1, . . . , rn} = Rq,σ.

Also note that the mttcf M ′ = (Q,Σ, ∆, q0, R
′) can be regarded as the mtt N =

(Q,Σ, ∆∪C, q0, R
′), by merely interpreting the θ and + nodes as output symbols. Each

output of N is a “choice tree” denoting the set of possible output trees. Obviously,

the translation set∆ carries out this interpretation of choice trees, and thus we have

τOI,M = τN ; set∆.

The reason why we introduce mttcfs is twofold. One reason is the decomposition

result explained above. The approach of our proof is that we first convert a mttcf

into a total deterministic mtt, and calculate its output tree in a compressed form.

and then give a membership checking algorithm for the representation. The other

reason is its more flexible use of nondeterminism and partiality. Suppose an mttcf rule

⟨q, σ(x1)⟩(y1)→ ⟨p, x1⟩(+(δ1, δ2)). This is not necessarily equivalent to the pair of mtt

rules ⟨q, σ(x1)⟩(y1)→ ⟨p, x1⟩(δ1) and ⟨q, σ(x1)⟩(y1)→ ⟨p, x1⟩(δ2), because the state p

may copy its parameter. In other words, normal mtts can behave nondeterministically

only at the point of state calls, while mttcfs can introduce nondeterminism at arbitrary

positions in the rewriting rules. Note that in general, this does not add any expressive

power in terms of the corresponding class of translations; we can still emulate + and

θ by introducing auxiliary state calls. However, if we restrict the forms of rules in

some particular form, then the existence of choice nodes does make a difference. For

example, any mttcf has an equivalent mttcf in a simpler normal form, namely, non-

erasure (Section 5.2), while for mtts this is not the case (this is due to the fact that in

mttcfs we can freely apply the state-calls ‘inline’ inside the rules, while not in mtts).

Such normal forms allow us much easier construction of ‘garbage-free’ mttcfs, as we

will see later in Chapter 5.

Path-linearity The conversion from a linear mttcf to a total deterministic mttcf

do not preserve linearity in general. For example, if we have two rules ⟨q, a(x1)⟩ →
a(⟨q, x1⟩) and ⟨q, a(x1)⟩ → b(⟨q, x1⟩) in the original linear mttcf, they are translated

into a single rule ⟨q, a(x1)⟩ → +(a(⟨q, x1⟩), b(⟨q, x1⟩)), in which the variable x1 occurs

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 51

twice. But since the conversion only inserts + and θ nodes, we can easily verify

the conversion preserves what we call path-linearity. An mttcf is called path-linear if a

subtree of the form ⟨q, xi⟩(· · · ⟨p, xj⟩(· · ·) · · ·) in its rules implies i ̸= j. For instance, an

mttcf is not linear but is path-linear if there is a right-hand side ⟨q, x1⟩(⟨p, x2⟩, ⟨p, x2⟩).
Due to the preservation of path-linearity (and non-preservation of linearity) of our

determinization, we consider path-linear mtts rather than linear mtts from now on.

Also note that, linear mtts and top-down tree transducers are trivially path-linear;

in the former all input variables in the right-hand side are distinct and in the latter

there are no nested state calls by definition. Thus, by the known decomposition

MTOI ⊆ DtT ; LMTOI (page 138 of [EV85]), we know that 2-fold composition of

path-linear OI-mtts are capable of expressing any translation realizable by an OI-mtt.

This implies that the class of translations realizable by finite compositions of OI-mtts

coincides with that of path-linear OI-mtts. Therefore, when we extend our result to

compositions of translations in the next Chapter, the class of path-linear mtts is in

some sense powerful enough for our purpose.

Before going into the detailed construction of our NP/DSPACE(n) algorithm, here

we prove an important lemma about the height property of path-linear mtts.

Lemma 4.3. Let M be a path-linear mtt. For any pair of trees (s, t) ∈ τOI,M , the

height of t is at most HM · |s| where HM is the maximum height of right-hand sides

of M .

Proof. Let s′ be any subtree of s. By induction on the size of s′, we prove that

the height of the trees in J⟨q, s′⟩(u1, . . . , um)KM
OI,Γ is at most HM · |s′| + h where h

is the height of the highest tree in
∪

iJuiKM
OI,Γ. Let s′ = σ(s1, . . . , sk) and r be an

arbitrary right-hand side in Rq,σ. It is sufficient to show that the height of trees inJr[x⃗/s⃗]KM
OI,(y1 7→Ju1KM

Γ ,...,yk 7→JukKM
Γ)

is at most HM · |s′| + h. Here, on every path from

root to leaves of r, there are at most one node labeled y ∈ Y , at most HM node labeled

δ ∈ ∆, and by path-linearity, at most one node labeled ⟨q, xi⟩ for each i. Hence, by

inductive hypothesis, the height of the resulting trees are at most h+HM +ΣiHM ·|si|,
which is equal to h + HM · |s′|.

Compressed Node Representation Let us review the compressed representation

of the output trees of a total deterministic mtt introduced in [BLM08]. Let N be a

total, deterministic, and path-linear mtt with output alphabet ∆ ∪ C and let s be an

input tree. Let E = {(r, ν) | q ∈ Q, σ ∈ Σ, r ∈ Rq,σ, ν ∈ pos(r)}. For a list e =

(r0, ν0) . . . (rn, νn) of elements of E, we define orig(e) (the orig in of e) as ϵ.i0 . . . ik−1

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 52

where k is the smallest index satisfying label(rk, νk) /∈ Q×X (or, let k = n + 1 when

all labels are in Q × X) and ij is the number such that ⟨q, xij ⟩ = label(rj , νj) for

some q. We call e well-formed if ri[νi] ∈ Q ×X for i < n, label(rn, νn) ∈ ∆ ∪ C, and

orig(e) ∈ pos(s). Intuitively, e is a partial derivation or a “call stack” of the mtt N .

Each node of τN (s) can be represented by a well-formed list, which can be stored in

O(|s|) space because its length is at most 1+(height of s) and the size of each element

depends only on the size of the fixed mtt, not on |s|.
Note that e can represent many nodes in τN (s) if the mtt is non-linear in the

parameters. For example, consider the mtt Mdexp with the following three rules r0,

r1, and r2

⟨q0, a(x)⟩ → ⟨q, x⟩(⟨q, x⟩(e)) (r0) ⟨q, e⟩(y)→ +(b(y, y), c(y, y)) (r2)

⟨q, a(x)⟩(y)→ ⟨q, x⟩(⟨q, x⟩(y)) (r1)

and the input tree s3 = a(a(a(e))), the list (r0, ϵ.1)(r1, ϵ.1)(r1, ϵ.1)(r2, ϵ.1) represents

all b-nodes at depth 16 of the tree τMdexp(s3), of which there are 28 many.

The label c-label(e) of the node represented by e is label(rn, νn). The operation

c-child(e, i) which calculates the representation of the i-th child of the node repre-

sented by e is defined in terms of the following three operations. For a well-formed list

e = (r0, ν0) . . . (rn, νn) with rank(c-label(e)) = m, we define downi(e) for 1 ≤ i ≤ m as

(r0, ν0) . . . (rn, νn.i). For a list e = (r0, ν0) . . . (rn, νn) where label(rj , νj(= ⟨qij , xkj ⟩ ∈
Q × X for every 0 ≤ j ≤ n, we define expand(e) = (r0, ν0) . . . (rn, νn)(rn+1, ϵ)

where rn+1 is the right-hand side of the unique ⟨qin , label(s, ϵ.k0 . . . kn)⟩-rule. For

e = (r0, ν0) . . . (rn, νn) such that label(rn, νn) = yi ∈ Y , we define pop(e) = (r0, ν0) . . .

(rn−1, νn−1.i). Then, the operation c-child(e, i) is realized by the following algorithm.

First apply downi to e, then repeatedly apply pop and expand as long as possible.

The repetition is assured to terminate in O(|s|) steps for a path-linear mtt, by the

following proposition.

Proposition 4.4. Let [e0, e1, . . . , en] be a list of lists satisfying the condition ei+1 =

pop(ei) or ei+1 = expand(ei) for every i < n. Let 0 ≤ i < j ≤ n, m ∈ N, ei =

(r0, ν0) . . . (rm, νm), ej = (r′0, ν
′
0) . . . (r′m, ν′

m), and orig(ei) = orig(ej). Then rk = r′k

and νk = ν′
k for all k < m, rm = r′m, and νm is a proper prefix of ν′

m.

Proof. Let k be the largest index i < k ≤ j such that ek is the shortest list among

ei+1 to ej , and l + 1 be the length of ek. Then by definition of pop and expand , ek

must be of the form (r0, ν0) . . . (rl−1, νl−1)(rl, νl.p) for some p.

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 53

MATCH (e, v)

1: while label(e) = + do

2: e← c-child(e, k) where k = 1 or 2, nondeterministically chosen

3: if c-label(e) ̸= label(v) then

4: return false

5: else if rank(label(v)) = 0 then

6: return true

7: else

8: for i = 1 to rank(label(v)) do

9: if not MATCH(c-child(e, i), child(v, i)) then

10: return false

11: return true

Figure 4.1: Algorithm MATCH

There are two cases: k < j or k = j. First, we show that it cannot be the case k < j

in fact. Suppose k < j. Since we took k so that ek is the shortest and the rightmost

list among ei+1, . . . , ej , the sequence of pop’s and expand ’s applied to obtain ej from

ek preserves the prefix ek unchanged. Thus, ek must be a proper prefix of ej . Note

that, by path-linearity, the input variable at the position νl and the position νl.p in

the rule rl is different. Therefore in this case, orig(ei) cannot be equal to orig(ej).

Hence, it must be the case k = j. In this case, obviously the statement of the

lemma holds.

The proposition means that the length of such a list [e0, e1, . . . , en] can be at most

HN · |s| where HN is the maximum depth of right-hand sides of the rules, because each

ei and ej must have either a different origin, or the same origin Hence, c-child runs

in linear time with respect to |s|. Similarly, the representation of the root of τN (s) is

obtained in polynomial time by repeatedly applying pop and expand as long as possible

to e0 = (r0, ϵ) where r0 denotes the right-hand side of the unique ⟨q0, label(s, ϵ)⟩-rule.

Matching Algorithm with NP Time Complexity Let t ∈ T∆. Figure 4.2.2

shows the nondeterministic algorithm MATCH that decides, given a well-formed list e

and a node v of t, whether the set of trees represented by the choice tree at e contains

the subtree of t rooted at v. The operations c-label and c-child are defined as above.

The operations label, rank, and child are basic tree operations, assumed to run in

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 54

polynomial time with respect to |t|. If we apply MATCH to the representations of the

root nodes of τN (s) and v = ϵ, we can decide whether (s, t) ∈ τM . Since this is the

standard top-down recursive comparison of two trees, the correctness of the algorithm

should be clear.

In each nondeterministic computation, MATCH is called once for each node of t.

In each call, the while-loop iterates at most c|s| time for a constant c. This is because,

due to the linear-height property of path-linear mtts; by Lemma 4.3 the height of the

output tree is bounded by c|s| for some constant c. Altogether, the total running time

is polynomial in |s|+ |t|.

Linear Space Complexity If naively implemented, the MATCH algorithm takes

O((|s|+log |t|)|t|) space, because in the worst case the depth of recursion is O(|t|) and

we have to remember e (which costs O(|s|) space) and v (O(log(|t|)) space at least,

depending on the tree node representation) in each step of the recursion. However,

note that in the algorithm we need to traverse both trees only in depth-first and left-

to-right order. If we can calculate the parent and siblings of each node, the MATCH

algorithm can be easily rewritten in tail-recursive form, even without nondeterminism

(See Figure 4.2.2).

Unfortunately, our compressed representation e of a node cannot support c-parent

or c-nextSibling directly; recall that one list may represent many nodes at the same

time. It is inherently ambiguous. One way to eliminate this ambiguity is to represent

each node not by a single list but by a list of lists, i.e., instead of remembering single

node in a compressed form, remember all the nodes in the path from the root to

the node. You may think that it then takes superlinear space with respect to |s|
– each compressed node takes linear space, and the length of the path cannot be

bound by a constant. However, note that the lists of nodes share common prefixes!

Suppose the root node is represented by (r0, ν0)(r1, ν1)(r2, ν2)(r3, ν3) and its child

node is obtained by applying down1, pop, and expand. Then the child node is of the

form (r0, ν0)(r1, ν1)(r2, ν
′
2)(r

′
3, ν

′
3), which shares the first two elements with the root

node representation. We show that if we store lists of nodes with common prefixes

maximally shared, then, in the case of path-linear mtts, their space consumption

becomes O(|s|+ |t|). The idea of sharing lists resembles the proof of context-sensitivity

of indexed languages [Aho68].

We encode a list of well-formed lists as a tree, written in parenthesized notation

on the tape. For example, the list of three lists [ρ1ρ2ρ3, ρ1ρ2ρ4, ρ1ρ5ρ6] is encoded as

ρ1(ρ2(ρ3, ρ4), ρ5(ρ6)). Since the number of parentheses is ≤ 2n and that of commas is

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 55

MATCH-TAILREC (e, v)

1: return CONTAINS?(e, v)

CONTAINS? (e, v)

1: if c-label(e) = label(v) then

2: if rank(label(v)) = 0 then

3: return MATCHED(e, v)

4: else

5: return CONTAINS?(c-child(e, 1), child(v, 1))

6: else if c-label(e) = + then

7: return CONTAINS?(c-child(e, 1), v)

8: else

9: return FAILED(e, v)

MATCHED (e, v)

1: if isRoot(e) then

2: return true

3: else if c-label(c-parent(e)) = + then

4: return MATCHED(c-parent(e), v)

5: else if isLastchild(e) then

6: return MATCHED(c-parent(e), parent(v))

7: else

8: return CONTAINS?(c-nextSibling(e), nextSibling(v))

FAILED (e, v)

1: if isRoot(e) then

2: return false

3: else if c-label(c-parent(e)) = + and not isLastchild(e) then

4: return CONTAINS?(c-nextSibling(e), v)

5: else if c-label(c-parent(e)) = + and isLastchild(e) then

6: return FAILED(c-parent(e), v)

7: else

8: return FAILED(c-parent(e), parent(v))

Figure 4.2: Algorithm MATCH-TAILREC

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 56

≤ n where n denotes the number of nodes, the size of this representation is O(n). When

we add a new node e to the end of the list, the addition is represented as an addition

to the rightmost path. As an example, let e = ρ1ρ5ρ7ρ8. The common prefix ρ1ρ5

with the current rightmost path ρ1ρ5ρ6 is shared, and the suffix ρ7ρ8 is added as the

rightmost child of the ρ5-node. Then, we have a new tree ρ1(ρ2(ρ3, ρ4), ρ5(ρ6, ρ7(ρ8))).

Removal of the last list, which means we are going up to the parent node, is the

reverse operation of addition; the rightmost leaf and its ancestors that have only one

descendant leaf are removed. Note that, since by definition a well-formed list cannot

be a prefix of any other well-formed lists, each well-formed list always corresponds to a

leaf node of the tree. It should be straightforward to implement these two operations

in linear space.

Let us consider what happens if we apply this encoding to the output of a path-

linear mtt. Note that we always apply the list-of-list representation to a path in the

tree, i.e., the lists [e0, e1, . . . , en] we have to store always satisfy the relation ej ∈
c-child+(ei) for every i < j. Let e = (r0, ν0) . . . (rm, νm) and e′ = (r′0, ν

′
0) . . . (r′m, ν′

m)

be proper prefixes of different elements in the same list satisfying the condition (here

we assume that e is taken from the element preceding the one where e′ is taken).

Then, orig(e) = orig(e′) only if e = e′. This can be proved by contradiction. Suppose

orig(e) = orig(e′) and e ̸= e′, and the j-th elements are the first difference between

e and e′. Then, by the condition that e′ is obtained by repeatedly applying c-child

to e, it must be the case that rj = r′j and νj is a proper prefix of ν′
j . However, due

to path-linearity, the input variable at νj and ν′
j must be different, which contradicts

orig(e) = orig(e′). Therefore, we can associate a unique node in pos(s) with each

proper prefix of the lists, which means that the number of distinct proper prefixes

is at most |s|. Similarly, it can be shown that adding only to the rightmost path is

sufficient for maximally sharing all common prefixes. Suppose not, then there must be

in the list three nodes of the forms e1 = e.(r, ν).e′1, e2 = e.(r, ν′).e′2, and e3 = e.(r, ν).e′3
with ν ̸= ν′ in this order. Note that if this happened, then the prefix e.(r, ν) would

not be shared by the rightmost addition. However, e2 ∈ c-child+(e1) implies that ν is

a proper prefix of ν′, and by e3 ∈ c-child +(e2), ν′ is a proper prefix of ν, which is a

contradiction. Hence, the number of nodes except leaves in the tree encoding equals

the number of distinct proper prefixes, which is at most |s|. We can bound the number

of leaves by |t|, the maximum depth of the recursion. So, the size of the tree encoding

of a list of nodes is O(|s|+ |t|).

Theorem 4.5. Let M be a path-linear mttcf. There effectively exists a nondetermin-

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 57

istic Turing machine which, given any s and t as input, determines whether or not

(s, t) ∈ τOI,M in polynomial time with respect to |s|+ |t|. Also, there effectively exists

a deterministic Turing machine that determines (s, t) ∈ τOI,M in O(|s|+ |t|) space.

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 58

4.3 Tractable Classes

In this section, we first prove that IO-mtts have polynomial-time translation mem-

bership, contrary to OI-mtts. Then we extend the result to several other extensions

of IO-mtts, and to some restricted subclasses of OI-mtts.

The idea of the proof is based on inverse type inference for mtts M (Theorem 7.4

of [EV85]); given a finite tree automaton B (accepting output trees), we can effec-

tively construct a finite tree automaton that recognizes the corresponding input trees

τ−1
IO,M (L(B)). The technique is widely used for exact typechecking of XML transla-

tions (see, e.g., [Toz01, MSV03, MBPS05, FH07]). Now, given an output tree t, by

constructing its minimal dag representation (i.e., the pointer representation of t such

that all isomorphic subtrees are shared), we can simply consider it as the trivial de-

terministic automaton Bt with at most |t|-many states which recognizes {t}. Once we

have constructed the automaton A for τ−1
IO,M (L(Bt)), we merely need to check whether

s ∈ L(A), in order to solve translation membership for (s, t). However, the automaton

A can be very large: its worst case number of states is exponential in |Bt|. Thus, we

must avoid to fully construct A in order to obtain PTIME complexity. Our idea is

to construct A on demand, while running it on the tree s. Note that inverse type

inference of an IO-mtt constructs an input type automaton which has states that are

functions p from Q to (V m → 2V) where V is the set of states of Bt, Q is the set of

states of M , and m is the maximum rank of states in Q. Such a state p tells us for

each q ∈ Q, which state of Bt is obtained if we apply the state q to an input tree. That

is, if A reaches the state p after reading a tree s, it means that running Bt on output

trees in ⟨q, s⟩(t|v1 , . . . , t|vm) obtains the states (p(q))(v1, . . . , vm).

Theorem 4.6. Let M be an mtt. Translation membership for τ IO,M can be determined

in time O(|s| · |t|2m+2 · |M |) where m is the maximum rank of M ’s states.

Proof. Let tdag be the minimal dag representing t. It is folklore that tdag can be

computed in amortized linear time in |t|, using hashing, and even in linear time using

pseudo radix sorting, see [ST80]. Let Vt be the set of nodes of tdag . We define label(v)

to denote the label in Σ of the node v ∈ Vt, and child(v, i) to denote the i-th child

node of v. Assuming a standard pointer structure representing dags, we regard each

execution of label and child takes O(1) time.

Let ⊥ be an element distinct from Vt and V = Vt. Let run : TΣ → A with

A = 2
∪

i Q(i)×V i×V be the function defined inductively as follows

run(σ(s1, . . . , sk)) = tr(σ, run(s1), . . . , run(sk))

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 59

where tr is defined below. The set A contains the states of the deterministic bottom-

up automaton of τ−1(t), tr is the transition function, and run computes the run of the

automaton. The intuition of the set of states A is, that “(q, v⃗, v′) ∈ run(s′)” means that

“if q is applied to the input subtree s′ with output subtrees rooted at v⃗ as parameters,

then it may generate an output subtree rooted at v′”. The special value ⊥ ∈ V is used

to denote a tree that is not a subtree of t. That is, for example, “(q, v⃗,⊥) ∈ run(s′)”

means that an application of q to the current node with parameters v⃗ may yield a tree

that is not a subtree of t.

The transition function tr : (
∪

i Σ(i) ×Ai)→ A is defined as follows

tr(σ, a⃗) = {(q, v⃗, v′) ∈
∪
i

Q(i) × V i × V | ∃r ∈ Rq,σ : fv⃗,⃗a(r, v′)}

where fv⃗,⃗a : T∆∪(Q×X)∪Y × V → {true, false} is defined inductively on right-hand

sides of the rules:

fv⃗,⃗a(yi, v
′) = true if v′ = vi

fv⃗,⃗a(yi, v
′) = false if v′ ̸= vi

fv⃗,⃗a(δ(r1, . . . , rn), v′) = label(v′) = δ ∧
∧

1≤i≤n

fv⃗,⃗a(ri, child(v′, i)) if v′ ∈ Vt

fv⃗,⃗a(δ(r1, . . . , rn),⊥) = ∃u⃗ ∈ V n :
(∧

1≤i≤n

fv⃗,⃗a(ri, ui)

∧ ∀u′ ∈ Vt :
(
label(u′) ̸= δ ∨

∨
1≤i≤n

child(u′, i) ̸= ui

))
fv⃗,⃗a(⟨q′, xj⟩(r1, . . . , rn), v′) = ∃u⃗ ∈ V n :

(
(q′, u⃗, v′) ∈ aj ∧

∧
1≤i≤n

fv⃗,⃗a(ri, ui)
)
.

The relation fv⃗,⃗a(r, v′) should be understood as: “evaluation of r will yield the output

subtree at v′, under the assumption that the parameters y⃗ are bound to v⃗ and the

effects of application of a state to each child is as described by a⃗ ”.

For a tree t′ ∈ T∆, let ρ(t′) be v ∈ Vt if t′ = t|v, and ρ(t′) = ⊥ otherwise. We also

define ρ(T) for T ⊆ T∆ as {ρ(t) | t ∈ T}. The correctness of the above construction is

verified by the following claim. Note that the claim is just rephrasing the intuition of

the set of states A explained above, in a formal way.

Claim . For every input tree s′, we have the following equation for all q ∈ Q, ri ∈
T∆∪(Q×TΣ)∪Y , and an environment Γ:

ρ
(J⟨q, s′⟩(r1, . . . , rn)KM

IO,Γ

)
=

{
v′

∣∣∣ (q, (v1, . . . , vn), v′) ∈ run(s′), vi ∈ ρ(JriKM
IO,Γ) for all i

}

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 60

By applying the claim for q = q0 and s′ = s, we know that t ∈ J⟨q, s⟩KM
IO,Γ is

equal to (q0, (), vϵ) ∈ run(s) where vϵ is the root node of tdag . Hence, the translation

membership can be determined by computing the set run(s).

The proof is by nested induction first on structure of s′, and then on the structure

of right-hand sides of the rules. Let s′ = σ(s1, . . . , sk) (the base case is the case k = 0).

By definition of the IO-semantics we have

ρ
(J⟨q, s′⟩(r1, . . . , rn)KM

IO,Γ

)
=

∪
r∈Rq,σ

{
ρ(Jr[x⃗/s⃗]KM

IO,Ξ) | Ξ(yi) ∈ JriKM
IO,Γ

}
and by definition of run, we have{

v′
∣∣∣ (q, v⃗, v′) ∈ run(s′), vi ∈ ρ(JriKM

IO,Γ)
}

=
∪

r∈Rq,σ

{
v′

∣∣∣ fv⃗,⃗a(r, v′), vi ∈ ρ(JriKM
IO,Γ)

}
where a⃗ = (run(s1), . . . , run(sk)). To show these two sets are equal, it is sufficient

to prove the the following statement: if ρ(Ξ(yi)) = vi then ρ(Jr[x⃗/s⃗]KM
IO,Ξ) = {v′ |

fv⃗,⃗a(r, v′)}. The proof is by inner induction on the structure of r.

If r = yi, we have ρ(JyiKM
IO,Ξ) = {vi} and {v′ | fv⃗,⃗a(r, v′)} = {v′ | v′ = vi} = {vi},

thus they are equal.

If r = ⟨q′, xi⟩(r1, . . . , rn), we have {v′ | fv⃗,⃗a(⟨q′, xi⟩(r1, . . . , rn), v′)} = {v′ | (q′, u⃗, v′)

∈ ai, fv⃗,⃗a(ri, ui) for all i}, which is by inner induction hypothesis equal to {v′ | (q′, u⃗, v′)

∈ ai, ui ∈ ρ(Jri[x⃗/s⃗]KM
IO,Ξ for all i}, and then by outer induction hypothesis equal to

ρ(Jr[x⃗/s⃗]KM
IO,Ξ).

If r = δ(r1, . . . , rn), we consider two cases. First, we show for any v′ ∈ Vt that

v′ ∈ ρ(Jr[x⃗/s⃗]KM
IO,Ξ) if and only if fv⃗,⃗a(r, v′). If label(v′) ̸= δ, it obviously holds. If

label(v′) = δ, we have v′ ∈ ρ(Jr[x⃗/s⃗]KM
IO,Ξ) if and only if v′ = ρ(δ(t1, . . . , tm)) for

some ti ∈ Jri[x⃗/s⃗]KM
IO,Ξ, This is equivalent to child(v′, i) ∈ ρ(Jri[x⃗/s⃗]KM

IO,Ξ) for all i,

which is by inner induction hypothesis equivalent to fv⃗,⃗a(r, child(v′, i)), as desired.

Second, we show ⊥ ∈ ρ(Jr[x⃗/s⃗]KM
IO,Ξ) if and only if fv⃗,⃗a(r,⊥). Note that we have

⊥ ∈ ρ(Jr[x⃗/s⃗]KM
IO,Ξ) if and only if there exists a tree t′ ∈ Jr[x⃗/s⃗]KM

IO,Ξ that is not a

subtree of t. By the definition of IO-semantics, this is equivalent to the following

condition: there exists ti ∈ Jri[x⃗/s⃗]KM
IO,Ξ for each i such that δ(t1, . . . , tn) is not a

subtree of t, i.e., ρ(δ(t1, . . . , tn)) = ⊥. It holds if and only if for any δ-labeled node

u′ ∈ Vt there exists i such that child(u′, i) ̸= ρ(ti). The reader should be able to verify

that if we take u⃗ as (ρ(t1), . . . ρ(tn)), this is exactly the definition of fv⃗,⃗a(r,⊥).

The time complexity for testing (q0, (), vϵ) ∈ run(s) is computed as follows. The

value run(s) for the whole input tree s can be computed by executing the tr function

on each node of s. The computation is done in bottom-up fashion as bottom-up

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 61

tree automata does, so that the states in a⃗ are already constructed. The number of

execution of the tr function is |s|. The set tr(σ, a⃗) can be constructed by simply testing

all combinations of (q, v⃗, v′) ∈
∪

i Q(i) × V i × V (which is of size ≤ |Q| · |V |m+1) and

r ∈ Rq,σ by fv⃗,⃗a. Note that fv⃗,⃗a may receive |r| · |V | different pairs of arguments,

and the computation of each value fv⃗,⃗a(r′, v′) takes O(|V |m) time in the worst case

(the fv⃗,⃗a(⟨q′, xj⟩(· · ·)) case) assuming the values of fv⃗,⃗a are already computed for all

subexpressions of r′. Hence, O(|r| · |V |m+1) time is sufficient here. Note that the

fv⃗,⃗a(δ(· · ·),⊥) case can be computed efficiently in O(|V |) time by remembering the

number |{v | fv⃗,⃗a(r′, v)}| for each sub-expression r′: the existence of u⃗ can be checked

by verifying the number is non-zero, and the check child(u′, i) ̸= ui is replaced with

“either not fv⃗,⃗a(r′, child(u′, i)) or the number is more than one”. Since it is only

required to compute the fv⃗,⃗a(δ(· · ·),⊥) cases at most |r| times, the time complexity for

the cases is O(|r| · |V |), which is subsumed by O(|r| · |V |m+1). Altogether, multiplying

all of them yields the desired complexity bound O(|s|·|t|2m+2 ·|M |). Note that we have

|V | ≤ |t|+ 1 by definition, and that the parameter |M | subsumes Σq∈Q,r∈Rq,σ |r|.

The reader may wonder why the same approach does not work for OI-mtts, whose

inverses also preserve the regular tree languages. The problem is, for OI, the states

of the inferred automata are in A = 2
∪

i Q(i)×(2V)i×V instead of A = 2
∪

i Q(i)×V i×V .

The difference is intuitively explained as follows: in IO-mtts, every copy of a same

parameter is an identical output tree and thus corresponds to a single node in V ,

while in OI-mtts, each copy is evaluated independently and thus may correspond to

different output nodes. To capture this phenomenon in the inverse type inference, each

parameter must be represented by a set of nodes rather than a single output node. The

additional exponential implies that a single state in A (a subset of
∪

i Q(i)×(2V)i×V)

can already be exponentially large. Therefore, on-the-fly construction does not help

to obtain a PTIME algorithm. Of course, Lemma 4.1 implies that there is no PTIME

algorithm for translation membership for OI-mtts (unless NP=P).

Nevertheless, some subclasses of OI-mtts still admit PTIME translation member-

ship. Note that the essential difficulty of OI-translation membership comes from the

copying of parameters. Consider, for example, an OI-mtt that is linear in the param-

eters (i.e., in every right-hand side each parameter yi occurs at most once); then each

parameter is either used once or is never used. In this case, it can be represented in

the inverse-type automaton by a set of size ≤ 1. More generally, if an OI-mtt is fi-

nite copying in the parameter, its translation membership can be tested in polynomial

time. An mtt is finite copying in the parameter if there exists a constant c such that

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 62

for any q, s, and u ∈ J⟨q, s⟩(y1, . . . , yk)K, the number of occurrences of yi in u is no

more than c; the number c is called a (parameter) copying bound by M . Note that

“linear-in-parameter” mtts are a special case of finite copying mtts; they are not only

finite copying with copying bound 1, but also the finiteness can be known by simply

counting the number of syntactic occurrences of each variable in the rules, while finite

copying in general is a semantic property of mtts. Also note that finite copying is a

decidable property, and the copying bound of an mtt can be effectively obtained. (See

Lemma 4.10 of [EM03b]. Although it is proved only for total deterministic mtts, the

same technique also works for IO- and OI- nondeterministic mtts.)

Theorem 4.7. Let M be an mtt that is finite copying in the parameter with copying

bound c. Then, translation membership for τOI,M can be determined in time O(|s| ·
|t|c(2m+2) · c · |M |) where m is the maximum rank of M ’s states.

Proof. Let tdag be the minimal dag representing t. Let V be the set of nodes of tdag .

We define label(v) to denote the label in Σ of the node v ∈ V , and child(v, i) to denote

the i-th child node of v.

Let A = 2
∪

i Q(i)×Pc(V)i×V where Pc(V) = {S ⊆ V | |S| ≤ c} and the function run

be defined as follows:

run(σ(s1, . . . , sk)) = tr(σ, run(s1), . . . , run(sk)).

The transition function tr : (
∪

i Σ(i) ×Ai)→ A is defined as follows

tr(σ, a⃗) = {(q, β⃗, v′) ∈
∪
i

Q(i) × Pc(V)i × V | ∃r ∈ Rq,σ : fβ⃗,⃗a(r, v′)}

where fβ⃗,⃗a : T∆∪(Q×X)∪Y × V → {true, false} defined as follows:

fβ⃗,⃗a(yi, v
′) = true if v′ ∈ βi

fβ⃗,⃗a(yi, v
′) = false if v′ ̸∈ βi

fβ⃗,⃗a(δ(r1, . . . , rn), v′) =
∧

1≤i≤n

fβ⃗,⃗a(ri, child(v′, i)) if label(v′) = δ

fβ⃗,⃗a(δ(r1, . . . , rn), v′) = false if label(v′) ̸= δ

fβ⃗,⃗a(⟨q′, xj⟩(r1, . . . , rn), v′) =

∃γ⃗ :
(
(q′, γ⃗, v′) ∈ aj∧

∧
1≤i≤n

∀u ∈ γi : fβ⃗,⃗a(ri, u)
)
.

Note that we do not have the ⊥ element in V this time. Instead, the empty set ∅ plays

the same role. The complexity of this algorithm is computed similarly to the case of

IO-mtts: we need to test by fβ⃗,⃗a all combinations of a ∈
∪

i Q(i) ×Pc(V)i × V (which

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 63

is of size O(|Q| · |V |cm+1) this time) and r ∈ Rq,σ, then fβ⃗,⃗a receives |r| · |V | different

pairs of arguments, and finally the computation of fv⃗,⃗a(⟨q′, xj⟩(· · ·)) takes O(|V |cm ·c)
time where |V |cm comes from the part “∃γ⃗” and c comes from the part “u ∈ γi”. The

correctness is shown by proving the following claim.

Claim . For every input tree s′, we have ρ
(J⟨q, s′⟩(r1, . . . , rn)KM

OI,Γ

)
=

{
v′

∣∣∣ (q, (β1, . . . ,

βn), v′) ∈ run(s′), βi ⊆ ρ(JriKM
OI,Γ) for all i

}
for all q ∈ Q, ri ∈ T∆∪(Q×TΣ)∪Y , and an

environment Γ.

The proof is by nested induction first on structure of s′, and then on the structure

of right-hand sides of the rules. Let s′ = σ(s1, . . . , sk) (the base case is the case k = 0).

By definition of the OI-semantics we have

ρ
(J⟨q, s′⟩(r1, . . . , rn)KM

OI,Γ

)
=

∪
r∈Rq,σ

{
ρ(Jr[x⃗/s⃗]KM

OI,Ξ) | Ξ(yi) = JriKM
OI,Γ

}
and moreover, by finite-copying property, we know that during the evaluation ofJr[x⃗/s⃗]KM

OI,Ξ, the elements of Ξ(yi) is used at most c times for each yi. Hence, it must

be the case ρ
(Jr[x⃗/s⃗]KM

OI,Ξ

)
=

∪ {
ρ
(Jr[x⃗/s⃗]KM

OI,Θ

)
| ∃Θ : Θ(yi) ⊆ Ξ(yi) ∩ Pc(T∆)

}
. By

definition of run, we have{
v′

∣∣∣ (q, β⃗, v′) ∈ run(s′), βi ⊆ ρ(JriKM
OI,Γ)

}
=

∪
r∈Rq,σ

{
v′

∣∣∣ fβ⃗,⃗a(r, v′), βi ⊆ ρ(JriKM
OI,Γ)

}
where a⃗ = (run(s1), . . . , run(sk)). To show these two sets are equal, it is sufficient

to prove the the following statement: if ρ(Θ(yi)) = βi then ρ(Jr[x⃗/s⃗]KM
OI,Θ) = {v′ |

fβ⃗,⃗a(r, v′)}. The proof is by inner induction on the structure of r.

If r = yi, we have ρ(JyiKM
OI,Θ) = ρ(Θ(yi)) = βi and {v′ | fβ⃗,⃗a(r, v′)} = {v′ | v′ ∈

βi} = βi, thus they are equal.

If r = ⟨q′, xj⟩(r1, . . . , rn), we have {v′ | fβ⃗,⃗a(⟨q′, xi⟩(r1, . . . , rn), v′)} =
{
v′ | ∃γ⃗ :(

(q′, γ⃗, v′) ∈ aj ∧
∧

1≤i≤n ∀u ∈ γi : fβ⃗,⃗a(ri, u)
)}

, which is by inner induction hypothesis

equal to
{
v′ | ∃γ⃗ :

(
(q′, γ⃗, v′) ∈ aj , γi ⊆ ρ(Jri[x⃗/s⃗]KM

OI,Θ)
}
, and then by outer induction

hypothesis equal to ρ(Jr[x⃗/s⃗]KM
OI,Θ).

If r = δ(r1, . . . , rn) and label(v′) ̸= δ, then both ρ(Jr[x⃗/s⃗]KM
OI,Θ) and {v′ | fβ⃗,⃗a(r, v′)}

are empty and thus equal. If r = δ(r1, . . . , rn) and label(v′) = δ, we have v′ ∈
ρ(Jr[x⃗/s⃗]KM

OI,Θ) if and only if v′ = ρ(δ(t1, . . . , tm)) for some ti ∈ Jri[x⃗/s⃗]KM
OI,Θ. This

is equivalent to child(v′, i) ∈ ρ(Jri[x⃗/s⃗]KM
OI,Θ) for all i, which is by inner induction

hypothesis equivalent to fv⃗,⃗a(r, child(v′, i)), as desired.

On the other hand, the PTIME result for IO-mtts can be generalized to a more

powerful extension of IO-mtts. One popular way to extend mtts is by regular look-

ahead. Mtts with regular look-ahead are equipped with one deterministic bottom-up

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 64

tree automaton and are allowed to select a rule with respect to the state of the tree

automaton, in addition to the current state and the label of the current node. Since

any MTIO’s with regular look-ahead can be simulated by a normal MTIO (Theorem

5.19 of [EV85]), the translation membership for MTIO with regular look-ahead is also

in PTIME. In fact, we can further extend the model to use a more expressive model of

look-ahead, namely, tree automata with equality and disequality constraints [BT92],

while still preserving the PTIME translation membership.

Definition 4.8. A bottom-up tree automaton with equality and disequality constraints

(TAC) is a tuple B = (P, Σ, δ), where P is the set of states, Σ the input alpha-

bet, and δ is a set of transitions of the form (σ(m), p1, . . . , pm, E,D, p) where E, D ⊆
{1, . . . , m}2 are the sets of equality and disequality constraints, respectively. A list

of trees t1, . . . , tm is said to satisfy the constraints if ∀(i, j) ∈ E : ti = tj and

∀(i, j) ∈ D : ti ̸= tj . We define δ̃ inductively as follows:

δ̃(σ(t1, . . . , tm)) = {p ∈ P |

∃(σ, p1, . . . , pm, E,D, p) ∈ δ :

pi ∈ δ̃(ti) for all i and t1, . . . , tm satisfy E and D}.

A TAC is total and deterministic if for any σ ∈ Σ, p1, . . . , pm ∈ P , and t1, . . . , tm ∈ TΣ,

there exists one unique transition (σ(m), p1, . . . , pm, E,D, p) ∈ δ such that t1, . . . , tm

satisfies the constraints E and D. For a total deterministic TAC, we abuse the notation

and denote by δ̃(t) the unique element of itself.

Note that, as well as a normal bottom-up tree automaton, we can run a TAC on

a tree in (amortized) linear time, by first computing the minimal dag representation

of the input tree; due to its minimality, the equality (or disequality) test of two sub-

trees can be carried out in constant time, by a single pointer comparison. Also note

that total deterministic TACs are equally expressive as its nondeterministic version

(as shown in Proposition 4.2 of [BT92] by a variant of usual powerset construction).

Hence, we adopt total deterministic TACs as our look-ahead model for mtts, without

sacrificing the expressiveness.

Definition 4.9. An mtt with TAC look-ahead is a tuple M = (Q, q0,Σ, ∆, R,B) where

B = (P, Σ, δ) is a total and deterministic TAC, and all other components are defined

as for mtts, except that the form of rules are as follows:

⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym)→ r (p1, . . . , pk, E,D).

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 65

The set of right-hand side of all rules of such form is denoted by Rq,σ,p1,...,pk,E,D. The

size |M | is defined as for normal mtts.

The semantics of mtts with TAC look-ahead differs from normal mtts only in the

side-condition of state application, which is defined as follows:

J⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)KM
µ,Γ =∪

r∈R′

{q
r[x1/s1, . . . , xk/sk]

yM

µ,(y1 7→t1,...,ym 7→tm)

∣∣ t1 ∈ Ju1KM
µ,Γ, . . . , tm ∈ JumKM

µ,Γ

}
where R′ = Rq,σ,δ̃(s1),...,δ̃(sk),E,D such that

s1, . . . , sk satisfies E and D.

In a word, rules in Rq,σ,p1,...,pk,E,D are used when the state q is applied to a node

satisfying all the following three conditions: (1) labeled σ, (2) the child subtrees

s1, . . . , sk of the node satisfy the constraints E and D, and (3) δ̃(si) = pi for all

i.

Mtts with TAC look-ahead are strictly more expressive than normal mtts. For

example, the translation {(π(s, s), e) | s ∈ TΣ} where π is a symbol of rank 2 and e is of

rank 0, can be done by a transducer with TAC look-ahead. But no mtt-composition can

realize this translation because the domain is not regular (by Corollary 5.6 of [EV85],

the domain of any mtt must be a regular tree language). Nevertheless, the PTIME

translation membership for MTIO can be extended to mtts with TAC look-ahead.

Theorem 4.10. Let M be an mtt with TAC look-ahead. Translation membership for

τ IO,M can be determined in time O(|s| · |t|2m+2 · |M |) where m is the maximum rank

of M ’s states.

Proof. The basic idea is again the on-the-fly construction of the inverse-type automa-

ton, but this time, to deal with the look-ahead, we run parallely the look-ahead au-

tomaton.

Let sdag be the minimal dag representation of s, which can be computed in O(|s|)
time. As explained before, the equality (or disequality) test of two subtrees of sdag

can be carried out in constant time. Let Vs be the set of nodes of sdag . Let Vt be the

set of nodes of tdag and V = Vt ∪{⊥}. The functions label(v), child(v, i), and ρ(t) are

defined as in the proof of Theorem 4.6.

Let A = 2
∪

i Q(i)×V i×V and run : TΣ → Vs×P×A (note the difference of the return

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 66

value of run, compared to that in Theorem 4.6) be the function defined as follows

run(s′) = tr(s′, σ, run(s1), . . . , run(sk))

with s′ = σ(s1, . . . , sk)

where the function tr is:

tr(s′, σ, (s1, p1, a1), . . . , (sk, pk, ak)) =

(s′, δ̃(s′), {(q, v⃗, v′) ∈
∪
i

Q(i) × V i × V | ∃r ∈ Rq,σ,p1,...,pk,E,D :

(s1, . . . , sm) satisfies E, D and fv⃗,⃗a(r, v′)}).

The definition of fv⃗,⃗a remains exactly the same as in Theorem 4.6.

The look-ahead state δ̃(s′) can be computed from σ, p1, . . . , pk, and s1, . . . , sk in

constant time. By the same argument as the case of normal mtts, we obtain the

O(|s| · |t|2m+2 · |M |) time complexity. The correctness of the construction is proved

also in the same way as for normal mtts. That is, we can prove the following claim by

nested induction on the structure of s′, and then on the structure of right-hand sides

of the rules. The only difference from Theorem 4.6 is the side condition of the choice

of right-hand sides r, which is defined to be coincide between the IO-semantics of mtts

with TAC and the definition of tr function.

Claim . For every input tree s′, we have the following equation for all q ∈ Q, ri ∈
T∆∪(Q×TΣ)∪Y , and an environment Γ: ρ

(J⟨q, s′⟩(r1, . . . , rn)KM
IO,Γ

)
=

{
v′

∣∣∣ (q, (v1, . . . ,

vn), v′) ∈ run(s′), vi ∈ ρ(JriKM
IO,Γ) for all i

}
Again, applying the claim to ρ(J⟨q0, s⟩KM

IO), we know that the translation member-

ship is equivalent to (q0, (), vϵ) ∈ run(s) where vϵ is the root node of tdag . Hence, the

translation membership can be determined by computing the set run(s).

Another extension of mtts that admits a polynomial time translation membership

is multi-return macro tree transducers.

Theorem 4.11. Let M be an mr-mtt. Translation membership for τ IO,M can be

determined in time O(|s| · |t|2m+2d+2l · |M |) where m is the maximum rank of the

states, d is the maximum dimension, and l is the maximum number of let -variables

in each right-hand side.

Proof. Let Q(i,j) is the set of states q of rank(q) = i and D(q) = j. For mr-mtts, we

take the set A of inverse-type automaton as A = 2
∪

i,j Q(i,j)×V i×V j

. The intuition of

the set of states A is similar to the case of normal mtts. That is, “(q, v⃗, w⃗) ∈ run(s′)”

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 67

means that “if q is applied to the input subtree s′ with output subtrees rooted at v⃗

as parameters, then it may return a tuple of output subtrees w⃗”. The construction is

quite similar to that of the proof for the case of normal IO-mtts. We define run and

tr as follows:

run(σ(s1, . . . , sk)) = tr(σ, run(s1), . . . , run(sk))

tr(σ, a⃗) = {(q, v⃗, w⃗) ∈
∪
i

Q(i,j) × V i × V j | ∃r ∈ Rq,σ : fv⃗,⃗a(r, w⃗)}

where fv⃗,⃗a(r, w⃗) is defined for

r = let (z1, . . . ze1)← ⟨qj1 , xi1⟩(u1, . . . , um1) in · · ·

let (zen−1+1, . . . zen)← ⟨qjn , xin⟩(umn−1+1, . . . , umn) in (umn+1, . . . , umn+1)

as

∃v′1, . . . , v′en
∈ V :

(
∃v⃗† :

(
(qj1 , v⃗

†, (v′1, . . . , v
′
e1

)) ∈ ai1 ∧
∧

1≤i≤m1

gv⃗,v⃗′ ,⃗a(ui, v
†
i)

)
∧ · · · ∧

∃v⃗† :
(
(qjn , v⃗†, (v′

en−1+1, . . . , v
′
en

)) ∈ ain ∧
∧

1≤i≤mn−mn−1

gv⃗,v⃗′ ,⃗a(umn−1+i, v
†
i)

)
∧∧

1≤i≤mn+1−mn

gv⃗,v⃗′ ,⃗a(umn+i, wi))
with gv⃗,v⃗′ ,⃗a defined as same as the function fv⃗,⃗a in the proof of Theorem 4.6, except

that we add two rules of let -variables:

gv⃗,v⃗′ ,⃗a(zi, w) = true if w = v′i

gv⃗,v⃗′ ,⃗a(yi, w) = false if w ̸= v′
i.

The translation membership then becomes equivalent to (q0, (), vϵ) ∈ run(s) with vϵ

the root node of tdag . The correctness is proved again by nested-induction first on

structure of s′ and then on structure of r. The complexity O(|s| · |t|2m+2d+2l · |M |) is

calculated in the same way as the previous theorems: fv⃗,⃗a is called |s| · |t|m+d times

each fv⃗,⃗a requires |t|m+d+2l · |r| steps of computation. Multiplying them gives the

desired complexity.

As a final remark we would like to mention the complexity of translation mem-

bership for deterministic mtts; it can be determined in linear time. Since domains of

compositions of mtts are regular, we can factor out the partiality and have the follow-

ing decomposition: for µ ∈ {IO, OI}, DMTn
µ ⊆ FTA ; DtMTn where FTA is the class

CHAPTER 4 COMPLEXITIES ON SINGLE MTTS 68

of partial identities whose domain is regular (analogous to Theorem 6.18 of [EV85]).

Therefore, to compute the translation membership for a composition of deterministic

mtts, we first check in O(|s|) time whether the given input s is contained in the do-

main of the translation, and then check the translation membership for composition

of deterministic and total mtts. Here, by Theorem 15 of [Man02], for a translation

τ ∈ DtMTn we can compute the unique output tree t′ ∈ τ(s) from the input s in time

O(|s| + |t′|), and during the computation, the size of every intermediate tree is less

than or equal to 2n · |t′|. Hence, for testing (s, t) ∈ τ , we simply compute τ(s); if the

size of any intermediate tree exceeds 2n · |t| then (s, t) cannot be an element of τ , and

otherwise, we compare the computed tree τ(s) with t. The time complexity of the

above procedure is O(|s|+ 2n · |t|).

Theorem 4.12. Let µ ∈ {IO,OI} and n ≥ 1. Translation membership for DMTn
µ is

in O(|s|+ 2n|t|).

Chapter 5

Complexities on Compositions of MTTs

Sequential composition of mtts gives rise to a powerful hierarchy (the “mtt-hierarchy”)

of tree translations which contains most known classes of tree translations. In this

chapter we mainly study the data complexity of the membership test for the output lan-

guages of the mtt-hierarchy—they are proved to be NP-complete and in DSPACE(n).

The key idea for obtaining the complexity is to transform the sequence of mtts into

what we call the “garbage-free” form, meaning that each mtt does not delete much of

its input, in the sense that every output tree t has a corresponding input tree of size

only linearly larger than |t|.

5.1 Overview

As explained in the Introduction, the key idea for obtaining linear-size complexity

for compositions of mtts is to bound the size of all intermediate input trees, and this is

achieved by putting the mtts into “garbage-free” or “non-deleting” forms. In the same

way as for total deterministic mtts [Man02], we classify the “deletion” in mtts into

three categories – erasing, input-deletion, and skipping (a similar classification without

erasing, which is a specific use of parameters, is also used in the case of nondeterministic

tts [Bak78]). The resolution of each kind of deletion, however, requires several new

techniques and considerations compared to previous work, due to the interaction of

nondeterminism and parameters. In the rest of this paper, we first explain how we

eliminate each kind of deletion, and then show the main results.

Note that, in this chapter, we basically deal only with OI-mtts and IO-mtts are

dealt through a simulation by compositions of OI-mtts. This is because our results

concerning garbage-free forms (e.g., Lemma 5.6) heavily rely on the right compositions

of linear nondeterministic tts, which is known to require OI-nondeterminism.

69

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 70

5.2 Erasing

We first consider “erasing” rules – rules of the form ⟨q, σ(· · ·)⟩(y1, . . . , ym) → yi.

An application of such a rule consumes one input σ-node without producing any new

output symbols; hence it is deleting a part of the input. Note that if the rank of σ is

non-zero, then a rule as above is at the same time also input-deleting, which is handled

in Section 5.3.

In the case of total deterministic mtts, “non-erasing” is a normal form, i.e., for every

total deterministic mtt there is an equivalent one without erasing rules. Unfortunately,

we could not find such a normal form for nondeterministic mtts with OI semantics.

Note that for OI context-free tree grammars (essentially mtts without input: think

of ⟨q, xi⟩ as a nonterminal Nq, or equivalently, think of macro grammars [Fis68] or

indexed grammars [Aho68], with trees instead of strings in right-hand sides), it has

been shown [Leg81] that there is an erasing grammar that has no non-erasing normal

form: erasing grammars are strictly more powerful than non-erasing ones. To see

where the difficulty arises, let us consider the following example of a deterministic mtt

and the input tree a(b, b):

⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(⟨q3, x2⟩(B, C))

⟨q2, b⟩(y1)→ A(y1, y1)

⟨q3, b⟩(y1, y2)→ y1.

The ⟨q3, b⟩-rule is erasing. The basic idea of obtaining the non-erasing normal form

for total deterministic mtts is to apply all erasing rules inline where they are called

in a right-hand side. That is, we remove the erasing rule and modify the q1 rule

to ⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(B) (plus a look-ahead check “x2 = b”). This approach

does not work properly under OI-nondeterminism. Let us suppose the case when the

⟨q3, b⟩-rules are nondeterministic as follows:

⟨q3, b⟩(y1, y2)→ y1 ⟨q3, b⟩(y1, y2)→ y2 ⟨q3, b⟩(y1, y2)→ A(y1, y2).

Note that the q2 rule duplicates its argument ⟨q3, x2⟩(B, C) before calling q3, and

evaluates the two copies independently. Thus, ⟨q1, a(b, b)⟩↓ contains all the nine

trees A(t1, t2) with t1, t2 ∈ {B, C, A(B, C)}. However, the inline application of eras-

ing rules now gives: ⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(B), ⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(C), and

⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(A(B, C)), which implies copying after evaluation of the q3 call.

So, in order to perform the expansion correctly, we need some way to preserve the

nondeterministic choice after the expansion.

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 71

It is for this purpose that we move from normal mtts to mtts with choice and

failure. The example above can be represented by an mttcf rule ⟨q1, a(x1, x2)⟩ →
⟨q2, x1⟩(+(B, +(C, A(B, C)))), for instance. We will show that under OI-semantics, every

mtt can be simulated by a canonical non-erasing mttcf. Recall that canonicity means

there is no top-level + or θ symbol in right-hand sides. Hence, by posing the canonicity,

we can also avoid rules like ⟨q, x1⟩(y1)→ +(y1, δ).

Lemma 5.1. Let M be a mtt. There exists effectively a linear tt E and a canoni-

cal mttcf M ′ such that M ′ is non-erasing and τE ; τOI,M ′ = τOI,M . Path-linearity is

preserved from M to M ′.

Proof. The idea is, we first predict all erasing beforehand and annotate each input

node by the information of erasing, by using a preprocessing linear tt. Then we

replace all erasing state calls (e.g., ⟨q, x1⟩(u1) with the rule ⟨q, . . .⟩(y1) → y1) in the

right-hand sides of rules with the result of the erasing call (e.g., u1). Note that we

have to deal with nondeterminism. Suppose we have two rules ⟨q, σ⟩(y1, y2)→ y1 and

⟨q, σ⟩(y1, y2) → y2 and a state call ⟨q, x1⟩(u1, u2) in a right-hand side. In order to

preserve the nondeterminism, we replace the state call by +(u1, u2).

Let M = (Q, Σ, ∆, q0, R). We define E to be a nondeterministic linear tt with

the set of states P = [Q → 2{1,...,n}] ∪ {p0} (functions from Q to 2{1,...,n} where n is

the maximum rank of the states of Q, and one distinct state p0, which is the initial

state), the input alphabet Σ, the output alphabet Σp = {(σ, p1, . . . , pk)(k) | σ(k) ∈
Σ, pi ∈ P}, and the following rules for every σ(k) ∈ Σ and p1, . . . , pk ∈ [Q→ 2{1,...,n}]:

⟨p, σ(x1, . . . , xk)⟩ → (σ, p1, . . . , pk)(⟨p1, x1⟩, . . . , ⟨pk, xk⟩) where p ∈ {p0, (q 7→
∪
{f(r) |

⟨q, . . .⟩(. . .)→ r ∈ R})} with f recursively defined as follows: f(yi) = {i}, f(δ(. . .)) =

∅, and f(⟨q′, xj⟩(r1, . . . , rm)) =
∪
{f(ri) | i ∈ pj(q′)}. The transducer E modifies

the label σ(k) of each input node into the form (σ(k), p1, . . . , pk). The annotated

information pi intuitively means “if a state q of M is applied to the i-th child of the

node, it will erase and return directly the e-th parameter for e ∈ pi(q)”. If pi(q) = ∅
then no erasing will happen. The rule of E is naturally understood if it is read from

right to left, as a bottom-up translation. Formally speaking, the following claim holds.

It is easily proved by induction on the structure of s.

Claim . (1) For each s ∈ TΣ and q ∈ Q(m), there is a unique p ∈ P \ {p0} such

that J⟨p, s⟩KE ̸= ∅, and e ∈ p(q) if and only if �e ∈ J⟨q, s⟩(�1, . . . ,�m)KM
OI. (2) Let

us denote by [s] such p determined by s. The output s′ ∈ τE(s) is unique. For

b ∈ pos(s) = pos(s′), label(s′, b) = (label(s, b), [s|b.1], . . . , [s|b.k]).

We next define a non-erasing mttcf, using the annotation added by E. Let M ′ =

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 72

(Q,Σp, ∆, q0, R
′) with R′ = {⟨q, (σ, p1, . . . , pk)(x1, . . . , xk)⟩(y1, . . . , ym) → r′ | r ∈

Rq,σ, r′ ∈ ne(r), r′ /∈ Y } where the set ne(r) is defined inductively by

ne(yj) = {yj}

ne(δ(r1, . . . , rl)) = {δ(r′1, . . . , r′l) | r′i ∈ ne(ri)}

ne(⟨q′, xj⟩(r1, . . . , rl)) =
∪
{ne(ri) | i ∈ pj(q′)} ∪ {⟨q′, xj⟩(nep(r1), . . . ,nep(rl))},

and nep defined as follows: nep(yj) = yj , nep(δ(r1, . . . , rl)) = δ(nep(r1), . . . ,nep(rl)),

and nep(⟨q′, xj⟩(r1, . . . , rl)) = +(u1, +(u2, . . . ,+(uz, θ) · · ·)) where {u1, . . . , uz} =

ne(⟨q′, xj⟩(r1, . . . , rl)). Intuitively, ne adds rules by replacing each top-level state

calls with its argument if the state call is erasing according to the annotation pj ’s.

The other function nep does essentially the same thing for non top-level positions, but

by replacing erasing state calls with + choices instead of adding rules to preserve the

OI-nondeterminism. It should be clear from the definition that M ′ is canonical and

non-erasing. Since ne only returns a set of subtrees of a right-hand side, ne and nep

never add any new nesting among state calls, and thus M ′ is path-linear if M is.

The correctness of this construction is proved by induction on the structure of the

input tree s, by showing that if JuiKM
OI,Γ = Ju′

iKM ′

OI,Γ then J⟨q, s⟩(u1, . . . , um)KM
OI,Γ =J⟨q, τE(s)⟩(u′

1, . . . , u
′
m)KM ′

OI,Γ ∪
∪
{JuiKM

OI,Γ | �i ∈ J⟨q, s⟩(�1, . . . ,�m)KM
OI,Γ}. Applying

this to the initial state q0 proves the equation τOI,M = τE ; τOI,M ′ .

Let s = σ(s1, . . . , sk) (the base case is the case k = 0) and τE(s) = (σ, p1,. . . ,pk)(s′1,

. . . , s′k). Then we have

J⟨q, s⟩(u1, . . . , um)KM
OI,Γ =

∪
r∈Rq,σ

{Jr[x⃗/s⃗]KM
OI,Ξ | Ξ(yi) = JuiKM

OI,Γ for all i}

and

J⟨q, τE(s)⟩(u′
1, . . . , u

′
m)KM ′

OI,Γ ∪
∪
{JuiKM

OI,Γ | �i ∈ J⟨q, s⟩(�1, . . . ,�m)KM
OI,Γ}

=
∪

r∈Rq,σ

{Jr′[x⃗/s⃗]KM
OI,Ξ′ | Ξ′(yi) = Ju′

iKM ′

OI,Γ for all i, r′ ∈ ne(r) \ Y }

∪
∪
{JuiKM

OI,Γ | �i ∈ J⟨q, s⟩(�1, . . . ,�m)KM
OI,Γ}

=
∪

r∈Rq,σ

{Jr′[x⃗/s⃗]KM
OI,Ξ′ | Ξ′(yi) = Ju′

iKM ′

OI,Γ for all i, r′ ∈ ne(r)}.

The last equality is derived by showing �i ∈ J⟨q, s⟩(�1, . . . ,�m)KM
OI,Γ if and only if ∃r ∈

Rq,σ : yi ∈ ne(r), because it implies the the equivalence between
∪
{JuiKM

OI,Γ | �i ∈J⟨q, s⟩(�1, . . . ,�m)KM
OI,Γ} and

∪
r∈Rq,σ

{Jr′[x⃗/s⃗]KM
OI,Ξ′ | Ξ′(yi) = Ju′

iKM ′

OI,Γ for all i, r′ ∈
ne(r)∩Y }. Here, let us assume Jr[x⃗/s⃗]KM

OI,Ξ =
∪

r′∈ne(r)Jr′[x⃗/s⃗ ′]KM
OI,Ξ for all r ∈ Rq,σ.

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 73

Then we have the desired equivalence as follows:

�i ∈ J⟨q, s⟩(�1, . . . ,�m)KM
OI,Γ

⇐⇒ ∃r∈Rq,σ : �i ∈ Jr[x⃗/s⃗]KM
OI,(y1 7→{�1},...,ym 7→{�m})

⇐⇒ ∃r∈Rq,σ : ∃r′∈ne(r) : �i ∈ Jr′[x⃗/s⃗ ′]KM ′

OI,(y1 7→{�1},...,ym 7→{�m}) (assumption)

⇐⇒ ∃r∈Rq,σ : ∃r′∈ne(r) : r′ = yi (since M ′ is non-erasing)

⇐⇒ ∃r∈Rq,σ : yi ∈ ne(r).

Also note that Jr[x⃗/s⃗]KM
OI,Ξ =

∪
r′∈ne(r)Jr′[x⃗/s⃗ ′]KM

OI,Ξ is sufficient for showing the

induction statement. Hence, all we have to prove is the equality Jr[x⃗/s⃗]KM
OI,Ξ =∪

r′∈ne(r)Jr′[x⃗/s⃗ ′]KM
OI,Ξ, which is shown by induction on the structure of r.

If r = yi, obviously the both side become Ξ(y) and therefore equal. If r =

δ(r1, . . . , rn), we have Jr[x⃗/s⃗]KM
OI,Ξ = {δ(t1, . . . , tn) | ti ∈ Jri[x⃗/s⃗]KM

OI,Ξ}, and by in-

ner induction hypothesis, this is equal to {δ(t1, . . . , tn) | ti ∈
∪

r′∈ne(r)Jr′i[x⃗/s⃗ ′]KM ′

OI,Ξ},
which is by definition of ne and OI-semantics, equal to

∪
r′∈ne(r)Jr′[x⃗/s⃗ ′]KM

OI,Ξ. Lastly

we consider the case r = ⟨q′, xj⟩(r1, . . . , rn). By inner induction hypothesis, we haveJri[x⃗/s⃗]KM
OI,Ξ =

∪
r′

i∈ne(r)Jr′i[x⃗/s⃗ ′]KM
OI,Ξ, which is equal to Jnep(ri)[x⃗/s⃗ ′]KM

OI,Ξ. There-

fore, by the outer induction hypothesis, Jr[x⃗/s⃗]KM
OI,Ξ is equal to J⟨q′, xj)⟩(nep(r′1), . . . ,

nep(r′n))[x⃗/s⃗ ′]KM ′

OI,Ξ∪
∪
{Jri[x⃗/s⃗]KM

OI,Γ | �i ∈ J⟨q, s⟩(�1, . . . ,�m)KM
OI,Γ}. By the previous

claim and the inner induction hypothesis, this is exactly the set
∪

r′∈ne(r)Jr′[x⃗/s⃗ ′]KM
OI,Ξ.

5.3 Input-Deletion

The second kind of deletion we investigate is “input-deletion”. For instance, if there

is the rule ⟨q0, a(x1, x2)⟩ → A(⟨q0, x2⟩) for the initial state q0 and the input is of the

form a(t1, t2), then the subtree t1 is never used for the output calculation. Although

total deterministic mtts can be made nondeleting (i.e., to always traverse all subtrees of

every input tree) by preprocessing with a deleting linear tt [Man02], it becomes more

difficult for nondeterministic mtts. This is because of the nondeterminism, which

means that there can be more than one possible computation for a single input tree,

and we cannot avoid the situation that one of the computations traverses all subtrees

while others do not. Consider the input a(b, c(t1, t2)) and the following set of rules:

⟨q1, a(x1, x2)⟩ → ⟨q2, x1⟩(⟨q3, x2⟩) ⟨q3, c(x1, x2)⟩ → ⟨q4, x1⟩

⟨q2, b⟩(y1)→ A(y1, y1) ⟨q3, c(x1, x2)⟩ → ⟨q4, x2⟩

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 74

Note that the state call for q3 is duplicated by OI semantics; even though the mtt is

linear. There are three possibilities with respect to input-deletion: either t1 is deleted

(the case all duplicated q3 calls choose the second q3-rule), t2 is deleted (the case all

choose the first rule), or no deletion occurs. We can still construct a linear tt that does

preliminarily deletion, in such a way that it nondeterministically returns a(b, c2(t2)),

a(b, c1(t1)), or a(b, c12(t1, t2)) (the subscript on c identifies the non-deleted children).

We can also modify the mtt as follows

⟨q3, c1(x1)⟩ → ⟨q4, x1⟩ ⟨q3, c12(x1, x2)⟩ → ⟨q4, x1⟩

⟨q3, c2(x1)⟩ → ⟨q4, x1⟩ ⟨q3, c12(x1, x2)⟩ → ⟨q4, x2⟩

in which rules using the “deleted” input subtrees are removed. Then, for the former

two “deleted” instances of the input trees, the mtt is successfully non-input-deleting.

But sadly, this mtt still may delete for the last instance of the input tree, when all

duplicated ⟨q3, c12⟩ calls choose the same rule. The point is, under nondeterminism,

we cannot argue the input-deleting property of each transducer. Rather, we can only

argue whether each computation is input-deleting or not. This is a weaker version of

the nondeletion condition used for total deterministic mtts, but it is sufficient for our

purpose.

In order to speak more formally, here we define the notion of computation tree

(following the method of [Bak78], but extending it to deal with accumulating param-

eters). For any finite set P , we define the ranked alphabet P = {p(1) | p ∈ P}.
Let M = (Q,Σ, ∆, q0, R) be an mttcf and s ∈ TΣ. The set COMP(M, s) is the

set of trees comp⟨q0, ϵ⟩↓ ⊆ T∆∪pos(s) called computation trees (or sometimes, sim-

ply computations). The derivation comp⟨q0, ϵ⟩↓ is carried out under the following set

of rewriting rules with outside-in derivation: +(u1, u2) → u1, +(u1, u2) → u2, and

comp⟨q, ν⟩(y⃗) → fν(r) for q ∈ Q, ν ∈ pos(s), r ∈ Rq,label(s,p) where fν is inductively

defined as follows:

fν(yi) = yi

fν(δ(r1, . . . , rk)) = ν(δ(fν(r1), · · · , fν(rk))

fν(⟨q′, xj⟩(r1, . . . , rk)) = comp⟨q′, ν.j⟩(fν(r1), · · · , fν(rk))).

Intuitively, COMP(M, s) is the set of trees ⟨q0, s⟩↓ where the parent of each ∆-node

is a monadic node labeled by the position in the input tree s that generated the ∆-

node. For example, the output tree ϵ(α(ϵ.1(β), ϵ.2(γ(ϵ(δ))))) means that the α and δ

nodes are generated at the root node of the input tree, and the β and γ nodes are

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 75

generated at the first and the second child of the root node, respectively. Let delpos

be the translation that removes all ν ∈ pos(s) nodes. It is easily proved by induction

on the number of derivation steps that delpos(COMP(M, s)) = ⟨q0, s⟩↓OI,M , i.e., if

we remove all pos(s) nodes from a computation tree, we obtain an output tree of the

original mtt.

We say that a computation tree u is non-input-deleting if for every leaf position

ν ∈ pos(s), there is at least one node in u labeled by ν. Note that the rewriting

rules of comp corresponding to erasing rules do not generate any pos(s) node. Thus,

non-input-deletion implies that not only some state is applied to every leaf, but also

a non-erasing rule of some state must be applied.

Lemma 5.2. Let M be a canonical non-erasing mttcf. There effectively exists a

linear tt I and a canonical non-erasing mttcf M ′ such that τOI,M = τI ; τOI,M ′ , and

for every input-output pair (s, t) ∈ τOI,M , there exists a tree s′ and a computation tree

u ∈ COMP(M ′, s′) such that (s, s′) ∈ τI , t = delpos(u), and u is non-input-deleting.

Also, M ′ is path-linear if M is.

Proof. Let M = (Q, Σ, ∆, q0, R). We define I as ({d}, Σ, Σ′, d, U) where Σ′ = {(σ, i1,

. . . , im)(k) | σ(k) ∈ Σ, 1 ≤ i1 < · · · < im ≤ k} and

U = {⟨d, σ(x1, . . . , xk)⟩ → (σ, i1, . . . , im)(⟨d, xi1⟩, . . . , ⟨d, xim⟩) | (σ, i1, . . . , im) ∈ Σ′}.

The transducer I reads the input tree and nondeterministically deletes subtrees while

encoding the numbers of the undeleted subtrees in the current label. We define the

mttcf M ′ as (Q,Σ′, ∆, q0, R
′) where

R′ = {⟨q, (σ, i1, . . . , im)(x1, . . . , xm)⟩(y⃗)→ r′

| r ∈ Rq,σ such that for all top-level calls ⟨q′, xp⟩ in r, p ∈ {i1, . . . , im},

and r′ is obtained by replacing ⟨q′, xij ⟩ in r with ⟨q′, xj⟩

and ⟨q′, xp⟩ with θ for p /∈ {i1, . . . , im}}.

The transducer M ′ has basically the same rules as M , except that state calls on

‘deleted’ children are replaced by θ (or, if it is at the top-level then the rule is removed,

to preserve canonicity). It should be easy to see that M ′ is canonical and non-erasing,

and preserves the path-linearity of M .

The correctness of this construction is proved as follows. Note that there is the

natural one-to-one correspondence between the set of ⟨q, σ⟩-rules of M and the set of

⟨q, (σ, i1, . . . , im)⟩-rules of M ′. First, we have (1) τOI,M ′(τI(s)) ⊆ τOI,M (s) because for

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 76

each derivation step in M ′ we can always apply the corresponding rewriting rule in M

and obtain the corresponding (i.e., differs only at state calls on ‘deleted’ nodes that are

replaced with θ) sentential form, which proves that we can obtain the same final output

as τI ; τOI,M ′ by τOI,M . Next, we show that (2) for any u ∈ COMP(M, s), there exists

an equivalent non-input-deleting computation. Let s′ be the minimal substructure of

s that contains all nodes and their ancestors contained in u. Then s′ ∈ τI(s) assuming

that s′ is appropriately relabeled from Σ to Σ′ as the transducer I does, and we

can obtain a computation u′ ∈ COMP(M ′, s′) corresponding to u similarly as in (1).

(Here, two thing assures that we can always choose the ‘corresponding’ rule. First, due

to the OI-semantics, every rewriting is done at outermost positions and hence must be

a part of the final output u. Second, non-erasure assures that if a state call comp⟨q, p⟩
is rewritten in the derivation of M , then a node labeled p′ must be generated for some

descendant p′ of p, and thus the node corresponding to p′ and its ancestor p are kept

not removed in s′). Then, by the construction we have delpos(u) = delpos(u′), and

since s′ is the minimal substructure of s that contains all nodes occurred in u, all leaf

nodes of s′ occur in u′, which means that u′ is non-input-deleting. Note that (2) implies

τOI,M (s) ⊆ τOI,M ′(τI(s)). Therefore, together with (1), we have τI ; τOI,M ′ = τOI,M as

desired.

5.4 Skipping

The third and last kind of deletion is “skipping”. A computation tree u is skip-

ping if there is a node ν ∈ pos(s) labeled by a rank-1 symbol such that no node

in u is labeled ν. For a canonical, non-erasing, and path-linear mttcf, skipping is

caused by either one of the following two forms of rules. One type is of the form

⟨q, σ(x1)⟩(y1, . . . , ym) → ⟨q′, x1⟩(u1, . . . , uv) where ui ∈ TY ∪C , and such rules are

called skipping. The others are rules which are not skipping but are of the form

⟨q, σ(x1)⟩(y1, . . . , ym) → ⟨q′, x1⟩(u1, . . . , uv) where ui ∈ T∆∪Y ∪C , and such rules are

called quasi-skipping. Note that, since the mttcf is path-linear, there are no nested

state calls in right-hand sides of rules for input symbols of rank 1. Also note that if

the root node of the right-hand side of a rule is not a state call, then it must be a

∆-node since the mttcf is canonical and non-erasing. So an application of such a rule

generates a ∆-node and thus a ν ∈ pos(s) node for the current input node. Therefore,

it is sufficient to consider only skipping and quasi-skipping rules.

Quasi-skipping rules may cause skipping computations due to parameter deletion:

for example, consider the quasi-skipping rule ⟨q, σ(x1)⟩(y1) → ⟨q′, x1⟩(δ(y1)); if there

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 77

is a q′-rule with a right-hand side not using y1, then the σ-node may be skipped. For

total deterministic mtts [Man02], there is a “parameter non-deleting” normal form,

i.e., every total deterministic mtt is equivalent to one that uses all parameters in the

right-hand sides of its rules, and thus only skipping rules (without choice nodes) were

considered there. Unfortunately, as for non-erasure, we could not find such a nor-

mal form for nondeterministic mtts. Instead, we add some auxiliary skipping rules

to mttcfs, so that we only need to consider skipping rules. Note that quasi-skipping

rules cause skipping computations only when parameters are deleted. The idea is, if a

parameter in some rule is never used for a computation, then replacing the parameter

by a failure symbol θ does not change the translation, and moreover, such replace-

ment changes a quasi-skipping rule into a skipping rule. Thus we may assume that

all skipping computations are caused by skipping rules, and hence we can straightfor-

wardly extend the proofs for total deterministic mtts [Man02] and nondeterministic

tts [Bak78].

Lemma 5.3. Let M be an canonical, non-erasing, and path-linear mttcf. There exists

effectively a linear tt S and a canonical, non-erasing, and path-linear mttcf M ′ such

that (1) τS ; τOI,M ′ = τOI,M and (2) for every input tree s and non-input-deleting

computation tree u ∈ COMP(M, s), there exists a tree s′ and a computation tree u′

such that s′ ∈ τS(s), u′ ∈ COMP(M ′, s′), delpos(u′) = delpos(u), and u′ is both

non-input-deleting and non-skipping.

Proof. Let M = (Q,Σ, ∆, q0, R). We define N = (Q,Σ, ∆, q0, R ∪R) with:

R ={⟨q, σ(x1)⟩(y⃗)→ r′ | q ∈ Q, σ ∈ Σ(1), r ∈ Rq,σ, r is quasi-skipping,

and r′ is obtained by replacing all subtrees of r of the form δ(· · ·), δ ∈ ∆ by θ}.

Obviously τOI,M ⊆ τOI,N , and it should be also clear that τOI,N ⊆ τOI,M , because in

each derivation of N , we can replace every application of R rules by the corresponding

rules in R.

Furthermore, we can similarly prove that for any non-input-deleting computation

u of COMP(N, s) and U the set of rank-1 nodes of s that are skipped in u, there

is a derivation that derives u and does not apply quasi-skipping rules to any p ∈ U .

Suppose a quasi-skipping rule ρ is applied to a node p ∈ U in a derivation of u.

Then, since all ∆-nodes in ρ are skipped in u (that means, they never come to top-

level position during the derivation), we can always replace the application with the

corresponding skipping rule in R (recall that it is obtained by replacing all ∆-nodes

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 78

by θ) without changing the final output computation u. Thus, for N , without loss of

generality we may assume that all skipping computation are caused by skipping rules.

We define S as (H, Σ, Σ×H, h0, U) where

H =
∪
m

[Q(m) →
∪
n

P(Q(n) ×P({1, . . . ,m})n)]

with P denoting power set, h0 = q 7→ {(q, {1}, {2}, . . . , {rank(q)})}, and

U = {⟨h, σ(x1, . . . , xk)⟩ → (σ, h)(⟨h0, x1⟩, . . . , ⟨h0, xk⟩) | σ ∈ Σ, h ∈ H}

∪ {⟨h, σ(x1)⟩ → ⟨h′
σ, x1⟩ | σ ∈ Σ(1), h ∈ H}}

where h′
σ is the function

h′
σ = q 7→ {(q′′,f(r1, ι⃗), . . . , f(rl, ι⃗)}) |

(q′, ι1, . . . , ιn) ∈ h(q),

⟨q′, σ(x1)⟩(y1, . . . , yn)→ ⟨q′′, x1⟩(r1, . . . , rl) ∈ R ∪R, ri ∈ TY ∪C}

with f inductively defined as: f(yj , ι1, . . . , ιm) = ιj , f(θ, ι1, . . . , ιm) = ∅, and f(+(r1,

r2), ι1, . . . , ιm) = f(r1, ι1, . . . , ιm) ∪ f(r2, ι1, . . . , ιm).

The transducer S reads the input tree and nondeterministically deletes sequences

of rank-1 nodes, while encoding the possible way to pass parameters by skipping rules.

Such information on parameter passing is encoded as a function h ∈ H. For example,

one possible output of S from the input a(b(c(· · ·)))) is (c, h)(· · ·), in which a and b

nodes are deleted and the information is encoded in h. Intuitive meaning of each h is,

“if (q′, ι1, . . . , ιn) ∈ h(q), then when a state q were applied to the root of the deleted

sequence of rank-1 nodes with parameters t1, . . . , tm, then N would have skipped the

sequence, and reached a state q′ with parameters ti1 , . . . tin , ij ∈ ιj for 1 ≤ j ≤ n”.

The initial state h0 means that “no node was skipped so far”.

We then define M ′ as (Q, Σ×H, ∆, q0, R
′) where

R′ = {⟨q,(σ, h)(x1, . . . , xk)⟩(y1, . . . , ym)→ r[y1/iset(ι1), · · · , yn/iset(ιn)]

| (q′, ι1, . . . , ιn) ∈ h(q), r ∈ Rq′,σ}

with iset({i1, . . . , ip}) = +(yi1 , +(yi2 , · · · , +(yip , θ) · · ·)). Since M is canonical, non-

erasing, and path-linear, clearly so is M ′.

It should be easy for the reader to verify that the definition of M ′ and S fol-

low the above intuition. The composition τS ; τOI,M ′ = τOI,M and the existence of a

non-skipping computation can be proved similarly as for Lemma 5.2. The inclusion

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 79

τS ; τOI,M ′ ⊃ τOI,M is shown by taking the intermediate output from τS as the tree

with same shape as the input s, i.e., the tree obtained by replacing the label σ of each

node by (σ, h0). Then by definition of R′, for each rewrite step of M using a ⟨q, σ⟩-rule

r, we can always choose the corresponding ⟨q, (σ, h0)⟩-rule r[y1/iset(ι1), . . .] ≡ r. To

show the inverse inclusion τS ; τOI,M ′ ⊂ τOI,M , we construct a non-skipping computa-

tion u′ from a computation u ∈ COMP(M, s) by taking the intermediate tree s′ as

the tree obtained from s by deleting all rank-1 nodes not contained in u. Then for any

sequence of skipping derivation comp⟨q, σ1(· · ·σn(σ(s⃗)) · · ·)⟩(v⃗)⇒∗ comp⟨q′, σ(s⃗)⟩(v⃗ ′)

in M where v⃗′ is some permutation of v⃗, we can always take in M ′ the correspond-

ing sentential form comp⟨q, (σ, h)(s⃗ ′)⟩(v⃗). such that h contains the permutation that

maps v⃗ to v⃗ ′. In this way, we can construct an equivalent non-skipping computation

u′ ∈ COMP(M ′, s′) from u. Hence, we have τS ; τOI,M ′ ⊂ τOI,M .

5.5 Counting the Number

The following lemma implies that after we have removed the three types of deletion,

namely, erasure, input-deletion, and skipping, any translation become to have linearly

bounded inputs.

Lemma 5.4. Let M = (Q,Σ, ∆, q0, R) be an mttcf, s an input tree, and u a non-

input-deleting, non-skipping computation tree in COMP(M, s) with delpos(u) = t.

Then |s| ≤ 2|t|.

Proof. Since u is non-input-deleting and non-skipping, for all nodes ν ∈ pos(s) of rank

zero or one, there exists a node labeled ν in u, and by definition of computation trees,

its child node is labeled by a symbol in ∆. Thus, leaves(s)+ rank1nodes(s) ≤ |t| where

leaves(s) is the number of leaf nodes of s and rank1nodes(s) is the number of nodes of

s labeled by rank-1 symbols. Since |s| ≤ 2× leaves(s) + rank1nodes(s) (this holds for

any tree s), we have |s| ≤ 2|t| as desired.

5.6 Complexity of The Output Language

Lemma 5.5. Let K ∈ {DSPACE(n), NP} and F a class of K languages effectively

closed under LT. Then LMTOI(F) and T(F) are also in K.

Proof. Let M be a linear mtt or a tt. Note that in both cases, M is path-linear. First,

we make it non-erasing; by Lemma 5.1, there exist a linear tt E and a canonical,

non-erasing, and path-linear mttcf M1 such that τE ; τOI,M1 = τOI,M . Next, we make

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 80

each computation non-input-deleting; by Lemma 5.2, there exist a linear tt I and

a canonical, non-erasing, and path-linear mttcf M2 such that τI ; τOI,M2 = τOI,M1 .

For every (s1, t) ∈ τOI,M1 , there is an intermediate tree s2 and a non-input-deleting

computation u ∈ COMP(M2, s2) such that (s1, s2) ∈ τI and delpos(u) = t. Then, we

make each computation non-skipping; by Lemma 5.3, there exist a linear tt S and a

canonical, non-erasing, and path-linear mttcf M3 such that τS ; τOI,M3 = τOI,M2 . For

every non-input-deleting computation u ∈ COMP(M2, s2), there is an intermediate

tree s3 and a non-input-deleting, non-skipping computation u′ ∈ COMP(M3, s3) such

that (s2, s3) ∈ τS and delpos(u′) = delpos(u). Altogether, we have τE ; τI ; τS ; τOI,M3 =

τOI,M , and for every (s, t) ∈ τOI,M there exists a tree s3 such that (s, s3) ∈ τE ; τI ; τS

and a non-input-deleting, non-skipping computation u′ ∈ COMP(M3, s3) such that

delpos(u′) = t. By Lemma 5.4, |s3| ≤ 2|t|.
Let L be a language in F . To check whether t ∈ τOI,M (L), we nondeterministically

generate (for the case K = NP) or deterministically generate one-by-one (for the

case K = DSPACE(n)) every tree s′ of size |s′| ≤ 2|t| and for each of them, test

whether (s′, t) ∈ τOI,M3 and s′ ∈ (τE ; τI ; τS)(L). By Theorem 4.5 (the NP and

DSPACE(n) translation membership for a path-linear mtt), the former test can be

done in complexity K with respect to |t|. By the assumption that F is closed under

LT, the language (τE ; τI ; τS)(L) is also in K. Thus the latter test is in complexity K
with respect to |s′| = O(|t|).

Note that, for T, the same decomposition as shown in the first paragraph of the

proof of Lemma 5.5 is already known (Lemma 1 of [Bak78]).

The proof of our next Lemma relies on several composition results developed in the

history of transducer theory. Let DtQREL be the class of total deterministic bottom-

up relabelings. A total deterministic relabeling is a tuple B = (Q,Σ,∆, R) where

Q, Σ, ∆ is as for tts and R is a finite set of rules of the form: σ(⟨q1, x1⟩, . . . , ⟨qk, xk⟩)→
⟨q, δ(x1, . . . , xk)⟩. For any σ, q1, . . . , qk, there exists exactly one rule of the form (hence

the name total deterministic). By regarding the rules as bottom-up rewrite rules, the

quintuple B naturally represents a translation from TΣ → T∆ that does not change

the shape of the trees and just modifies the labels of each node. A top-down tree trans-

ducer preceded by a total deterministic bottom-up relabeling is called a top-down tree

transducer with regular look-ahead and known to have good compositionality [Eng77].

Here we list the results that will be used later. Note that DtQREL contains the

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 81

identity mapping. Therefore, T ⊆ DtQREL ;T and LT ⊆ DtQREL ; LT.

(DtQREL ; T) ; (DtQREL ; LT) = (DtQREL ; T) Lemma 2.11 of [Eng77] (C1)

(DtQREL ; LT) ; (DtQREL ; LT) = (DtQREL ; LT) Lemma 2.11 of [Eng77] (C2)

DtMT ; DtQREL = DtMT Lemma 11 of [EM02] (C3)

DtQREL ⊆ LT Lemma 2.9 of [Eng75] (C4)

Another series of results required is about decompositions of OI-mtts. Two types of

decomposition is known:

MTOI = DtMT ; T Corollary 6.12 of [EV85] (C5)

MTOI ⊆ DtT ; LMTOI page 138 of [EV85] (C6)

Lemma 5.6. Let K ∈ {DSPACE(n), NP} and F a class of K languages effectively

closed under LT. Then MTOI(F) is also in K and effectively closed under LT.

Proof. The closure under LT immediately follows from C5, C1, C3, and again C5:

MTOI ; LT = DtMT ; T ; LT ⊆ DtMT ;DtQREL ; T = DtMT ; T = MTOI. We have

MTOI(F) ⊆ LMTOI(T(F)) by the decomposition C6, and by applying Lemma 5.5

twice, LMTOI(T(F)) is in K.

Theorem 5.7. MT∗
OI(REGT) ⊆ DSPACE(n) ∩NP-complete.

Proof. The class REGT is closed under LT (Propositions 16.5 and 20.2 of [GS97]) and

is in DSPACE(n) ∩ NP (see, e.g., [GS97]). By induction on k ≥ 1 it follows from

Lemma 5.6 that MTk
OI(REGT) is in DSPACE(n) and NP. As noted in the Introduc-

tion, NP-hardness follows from [Rou73] and the fact that the indexed languages, which

are equivalent to the yields of context-free-tree languages under OI-derivation, are in

MT2
OI(REGT).

Although we only have considered outside-in evaluation order up to here, the pre-

vious result holds for compositions of mtts in inside-out evaluation order. This is

because MT∗
IO = MT∗

OI (more specifically, MTOI ⊆ MT2
IO and MTIO ⊆ MT2

OI) by

Theorem 7.3 of [EV85], where MTIO denotes the class of translations realized by mtts

in inside-out evaluation order.

Corollary 5.8. MT∗
IO(REGT) ⊆ DSPACE(n) ∩NP-complete.

The yield translation, which translates a tree into its string of leaf labels from left

to right (seen as a monadic tree), is in DtMT. Therefore the output string languages

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 82

yield(MT∗(REGT)) of mtts are also in the same complexity class as Theorem 5.7.

Especially, this class contains the IO- and OI- hierarchies [Dam82]. Note that the IO-

hierarchy is in DtMT∗(REGT) and hence in DSPACE(n) by Corollary 17 of [Man02].

Since the first level of the OI-hierarchy are the indexed languages [Fis68] which are

NP-complete [Rou73], we obtain the following.

Corollary 5.9. The OI-hierarchy is in DSPACE(n) ∩NP-complete.

5.7 Garbage-Free Form

The inductive proof of the output language complexity can be seen as iteratively

making the last mtt in the composition sequence non-deleting and obtaining the non-

deleting sequence of mtts eventually. By re-stating the proof strategy formally, we

obtain the following main theorem of this chapter.

Theorem 5.10 (Garbage-Free Form). Let τ ∈ MTk
OI (k ≥ 1). There effectively exist

translations ρ1,ρ2,. . . , ρ2k realized by path-linear OI mttcfs and ρD ∈ DtQREL ; LT

satisfying the following two conditions:

1. τ = ρD ; ρ1 ; · · · ; ρ2k

2. For any (s, t) ∈ τ there exists s1, . . . , s2k such that (s, s1) ∈ ρD, (si, si+1) ∈ ρi for

1 ≤ i ≤ 2k − 1, (s2k, t) ∈ ρ2k, |si| ≤ 2|si+1| for 1 ≤ i ≤ 2k − 1, and |s2k| ≤ 2|t|.

Proof. The proof is by induction on k. For the case k = 1, by the decomposition C6,

there exist translations τ1 ∈ DtT and τ2 ∈ LMTOI such that τ = τ1 ; τ2. First we

make the latter translation τ2 non-deleting. By Lemmas 5.1, 5.2, 5.3, and 5.4, we can

decompose τ2 to τE ; τI ; τS ; ρ2, where τE , τI , τS ∈ LT, ρ2 a path-linear mttcf, and for

every (s, t) ∈ τ2 there exists a tree s′ such that (s, s′) ∈ τE ; τI ; τS and (s′, t) ∈ ρ2

with |s′| ≤ 2|t|. Then by C1, τ1 ; τE ; τI ; τS ∈ T ; LT ; LT ; LT ⊆ DtQREL ;T. Hence,

we let τQ ; τ ′
1 = τ1 ; τE ; τI ; τS with τQ ⊆ DtQREL and τ ′

1 ∈ T. Then again by using

Lemmas 5.1, 5.2, 5.3, and 5.4, we decompose τ ′
1 into τ ′

E ; τ ′
I ; τ ′

S ; ρ1 similarly. Here, let

ρD = τQ ; τ ′
E ; τ ′

I ; τ ′
S . By C2, ρD ∈ DtQREL ; LT ; LT ; LT ⊆ DtQREL ; LT. Altogether,

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 83

the process of the transformation is summarized as follows

τ = τ1 ; τ2 (MTOI = DtT ;LMTOI)

= τ1 ; (τE ; τI ; τS ; ρ2) (Eliminate Three Types of Deletion)

= (τ1 ; τE ; τI ; τS) ; ρ2 (Associativity)

= (τQ ; τ ′
1) ; ρ2 (T ; LT∗ ⊆ DtQREL ;T)

= (τQ ; (τ ′
E ; τ ′

I ; τ ′
S ; ρ1)) ; ρ2 (Eliminate Three Types of Deletion)

= (τQ ; τ ′
E ; τ ′

I ; τ ′
S) ; ρ1 ; ρ2 (Associativity)

= ρD ; ρ1 ; ρ2 (DtQREL ; LT∗ ⊆ DtQREL ; LT)

with both the condition 1 and 2 satisfied.

Now we consider the case k > 1. Let τ = τ1 ; · · · ; τk−1 ; τk with τi ∈ MTOI for

all i. Then by exactly the same transformation as the case k = 1, we can decompose

τk to ρ′D ; ρ2k−1 ; ρ2k such that ρ′D ∈ DtQREL ; LT, ρ2k−1, ρ2k are realized by path-

linear mttcfs, and for any (s′, t) ∈ τk there exist s2k−1 and s2k with (s′, s2k−1) ∈ ρ′D,

(s2k−1, s2k) ∈ ρ2k−1, (s2k, t) ∈ ρ2k, and |s2k−1| ≤ 2|s2k| and |s2k| ≤ 2|t|. Note

that, by C1, C3, and C5, we have MTOI ; DtQREL ; LT ⊆ MTOI. It implies that

(τ1 ; · · · ; τk−1) ; ρ′D ∈ MTk−1
OI . Therefore, by inductive hypothesis, (τ1 ; · · · ; τk−1) ; ρ′D

is equal to the composition sequence ρD ; ρ1 ; · · · ; ρ2k−2 satisfying the conditions 1 and

2. Hence, we have τ = ρD ; ρ1 ; · · · ; ρ2k−2 ; ρ2k−1 ; ρ2k as desired.

We show another applications of the garbage-free form, namely, the NP and the

DSPACE(n) upperbound for OI-mtts, which have been shown only for linear mtts in

the previous chapter. The result actually extends to finitely many compositions of

mtts.

Theorem 5.11. Translation membership of MTk
OI for k ≥ 1 and MTk

IO for k ≥ 2 is

in DSPACE(n) and NP-complete.

Proof. NP-hardness immediately follows from Theorem 4.1 and the fact that two com-

positions of IO-mtts can simulate one OI-mtts (Theorem 7.8 of [EV85]: MTOI ⊆
MT2

IO). Also, it is known that two compositions of OI-mtts can simulate IO-mtts:

MTIO ⊆ MT2
OI (Theorem 6.10 of [EV85]). Hence, it is sufficient to show the NP and

the DSPACE(n) complexity only for the OI case.

Let τ ∈ MTk
OI. Then we can take the garbage-free form ρD ; ρ1 ; · · · ; ρ2k = τ so

that it satisfy the condition of τ by Theorem 5.10. To determine for a given pair

of trees (s, t) whether or not it is in τ , it is sufficient to test whether there exists

CHAPTER 5 COMPLEXITIES ON COMPOSITIONS OF MTTS 84

trees s1, · · · , s2k with |s1| ≤ 2|s2| ≤ 4|s3| ≤ · · · ≤ 22k|s2k| ≤ 22k+1|t|, (s, s1) ∈ ρD,

(si, si+1) ∈ ρi for 1 ≤ 2k − 1, and (s2k, t) ∈ ρ2k. For carrying out the check in NP

time, we first nondeterministically generate all intermediate results s1 to s2k in linear

time with respect to |t|, then run the NP translation membership test (Theorem 4.5)

for each ρi. Note that the translation membership of ρD ∈ DtQREL ; LT is also in NP

(and in DSPACE(n) too), because we can check it by first running the DtQREL part

on s in deterministic linear space and time, and then check the translation membership

of the LT part. For DSPACE(n) complexity, we generate one-by-one all trees of size

22k−i+1|t| as each si, and test the translation membership for each ρi and ρD.

Chapter 6

Conclusion and Future Work

Although in general macro tree transducers seem to be a promising formal model for

XML translations, they still have some shortcomings and many open problems. We

have improved the issues from two directions: introduction of a mild extension of

mtts that has better compositionality, and investigation on the complexity of several

verification problems on the mtt-hierarchy. The contributions presented in the thesis

are as follows.

• We have introduced an extension of mtts, namely, multi-return macro tree trans-

ducers. We have shown that multi-return macro tree transducers have better

compositionality than normal mtts, and have also shown the strict increase in

terms of expressiveness.

• We have shown the “garbage-free” form of compositions of mtts, which has

allowed us to derive the complexity for membership of output languages and

translation membership of the mtt-hierarchy.

6.1 Future Work

Open Classes of Translation Membership We wish to continue investigating

the complexity of verification problems for tree translation models. From a theoretical

point of view, there remain two variants of mtts whose complexities of translation

membership are left open. One is macro forest transducers [PS04] and their general-

ization, the mtts with holes [MN08] in IO mode. Note that, similar to Theorem 4.6

of [MN08], hole-mtts in IO mode are equal to MTIO ; YIELD, which is included in

MTIO ; LDtMT. An algorithm based on inverse type inference does not work, because

the parameter part of the states of the inverse-type automaton is a set of functions

85

CHAPTER 6 CONCLUSION AND FUTURE WORK 86

[V → V], which is exponential in size with respect to the output tree |t|. On the other

hand, it is not clear either whether it is NP-hard. Note that the class of translation

is equal to the composition of MTIO with total deterministic transducers. Hence,

the amount of nondeterminism is equal to IO-mtts and thus less than OI-mtts, which

leaves some hope for PTIME translation membership. Another interesting class is

that of 1-parameter mtts in OI mode. Our encoding of 3-SAT used three parameters.

In fact, the number of parameters can be reduced to two by embedding the encodings

of boolean variables in the input tree s. But so far, we could not find any reduction

from NP-hard problems to 1-parameter mtts. On the other hand, since a 1-parameter

OI-mtt can generate 222n

output trees from a single input tree of size n in contrast to

IO-mtts that have at most O(22n

) outputs, its amount of nondeterminism is similar to

that of full OI-mtts. We expect that identifying the complexity of these border cases

will shed some light on the relationship between the amount of nondeterminism and

the computational hardness of the translation membership problem.

Applications of the Garbage-Free Form Another direction of further research

is to seek more applications of the garbage-free form for showing the complexity of

other problems concerning mtts. Note that, for the total deterministic version of

the garbage-free form, several applications are known, such as a decision algorithm

for the property called “linear-size increase” [Man03], or a decision algorithm for the

finiteness of output languages. As an application of the nondeterministic version of

garbage-free forms, we are particularly interested in the enumeration of the output set

τ(s) from a single input tree, as well as the retrieval of arbitrary one tree from the set

τ(s). Algorithms for solving these two problems have an application to, e.g., query

optimization. Queries on XML documents written in regular expression patterns can

be represented as a nondeterministic mtt translation that, given a database document,

returns any one of the node satisfying the query condition. It is common to write a

query in a compositional form. That is, programmers often construct a partial view of

the original XML document, and run each query on the view document. Such a form

of querying can be thought as a composition sequence of tree translations, and, our

transformation to “garbage-free” form of mtts should imply an automatic elimination

of unused part of view documents. We hope that the elimination can not only give

us a theoretical complexity upperbound, but also bring a practical efficiency into the

implementation of XML query engines.

CHAPTER 6 CONCLUSION AND FUTURE WORK 87

Efficient Implementation of the Output Language Membership Our NP and

DSPACE(n) algorithm for testing the membership of mtt output languages contained a

part that “generates all intermediate trees (of size linearly bounded by |t|) one-by-one”.

Although it was sufficient for giving an upperbound complexity of the problem, naively

implementing the strategy is far less efficient for use in the practice. We would like to

give a more efficient method for truly ‘guessing’ and generating only the intermediate

trees that indeed generates the given final output tree. Although the problem is NP-

complete as we have shown in the thesis, there still remain some hope to (1) obtain

a ”practically efficient” algorithm, and (2) establish a subclass of translations that

has tractable output language membership yet keeps subsuming many practical XML

translations. The idea is that many parts of typical XML translations are bidirectional,

i.e., most of the fragments of output XML documents are generated from a uniquely

determined input fragment. Typically, it is not rare that a particular label (tag in

XML) occurs in exactly one rule of a translation. In such a case, since we know that

the rule must be used in the translation, we can uniquely identify some input fragment

from the output.

References

[Aho68] Alfred V. Aho. Indexed grammars–an extension of context-free gram-

mars. Journal of the ACM, 15:647–671, 1968.

[Asv81] Peter R.J. Asveld. Time and space complexity of inside-out macro lan-

guages. International Journal of Computer Mathematics, 10:3–14, 1981.

[Bak78] Brenda S. Baker. Generalized syntax directed translation, tree transduc-

ers, and linear space. SIAM Journal on Computing, 7:376–391, 1978.

[BLM08] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient

memory representation of XML document trees. Information Systems,

33:456–474, 2008.

[BPSMM00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Exten-

sible markup language (XMLTM), 2000. http://www.w3.org/XML/.

[BT92] Bruno Bogaert and Sophie Tison. Equality and disequality constraints on

direct subterms in tree automata. In Symposium on Theoretical Aspects

of Computer Science (STACS), pages 161–171, 1992.

[CFZ82] Bruno Courcelle and Paul Franchi-Zannettacci. Attribute grammars and

recursive program schemes I. Theoretical Computer Science, 17:163–191,

1982.

[Cou94] Bruno Courcelle. Monadic second-order definable graph transductions:

A survey. Theoretical Computer Science, 126:53–75, 1994.

[Dam82] Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Sci-

ence, 20:95–207, 1982.

[DE98] Frank Drewes and Joost Engelfriet. Decidability of the finiteness of

ranges of tree transductions. Information and Computation, 145:1–50,

1998.

88

REFERENCES 89

[EM99] Joost Engelfriet and Sebastian Maneth. Macro tree transducers, attribute

grammars, and MSO definable tree translations. Information and Com-

putation, 154:34–91, 1999.

[EM02] Joost Engelfriet and Sebastian Maneth. Output string languages of com-

positions of deterministic macro tree transducers. Journal of Computer

and System Sciences, 64:350–395, 2002.

[EM03a] Joost Engelfriet and Sebastian Maneth. A comparison of pebble tree

transducers with macro tree transducers. Acta Informatica, 39:613–698,

2003.

[EM03b] Joost Engelfriet and Sebastian Maneth. Macro tree translations of linear

size increase are mso definable. SIAM Journal on Computing, 32:950–

1006, 2003.

[Eng75] Joost Engelfriet. Bottom-up and top-down tree transformations – a com-

parison. Mathematical Systems Theory, 9:198–231, 1975.

[Eng77] Joost Engelfriet. Top-down tree transducers with regular look-ahead.

Mathematical Systems Theory, 10:289–303, 1977.

[Eng80] Joost Engelfriet. Some open questions and recent results on tree trans-

ducers and tree languages. In Formal Language Theorey; Perspectives

and Open Problems, pages 241–286. Academic Press, 1980.

[Eng86] Joost Engelfriet. The complexity of languages generated by attribute

grammars. SIAM Journal on Computing, 15:70–86, 1986.

[EV85] Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal of

Computer and System Sciences, 31:71–146, 1985.

[EV88] Joost Engelfriet and Heiko Vogler. High level tree transducers and iter-

ated pushdown tree transducers. Acta Informatica, 26:131–192, 1988.

[EV94] Joost Engelfriet and Heiko Vogler. The translation power of top-down

tree-to-graph transducers. Journal of Computer and System Sciences,

49:258–305, 1994.

[FH07] Alain Frisch and Haruo Hosoya. Towards practical typechecking for

macro tree transducers. In Database Programming Languages (DBPL),

pages 246–260, 2007.

REFERENCES 90

[Fis68] Michael J. Fischer. Grammars with Macro-Like Productions. PhD thesis,

Harvard University, Cambridge, 1968.

[Fül81] Zoltán Fülöp. On attributed tree transducers. Acta Cybernetica, 5:261–

279, 1981.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. Freeman, 1979.

[GS97] Ferenc Gécseg and Magnus Steinby. Tree languages. In Grzegorz Rozen-

berg and Arto Salomaa, editors, Handbook of Formal Languages, Vol 3:

Beyond Words, pages 1–68. Springer-Verlag, 1997.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley, 1979.

[IH08] Kazuhiro Inaba and Haruo Hosoya. Multi-return macro tree transducers.

In Programming Language Technologies for XML (PLAN-X), 2008.

[IHM08] Kazuhiro Inaba, Haruo Hosoya, and Sebastian Maneth. Multi-return

macro tree transducers. In Conference on Implementation and Applica-

tion of Automata (CIAA), pages 102–111, 2008.

[IM08] Kazuhiro Inaba and Sebastian Maneth. The complexity of tree trans-

ducer output languages. In Foundations of Software Technology and

Theoretical Computer Science (FSTTCS), pages 244–255, 2008.

[IM09] Kazuhiro Inaba and Sebastian Maneth. The complexity of translation

membership for macro tree transducers. In Programming Language Tech-

nologies for XML (PLAN-X), 2009.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical

Systems Theory, 2:127–145, 1968.

[Leg81] Bernard Leguy. Grammars without erasing rules. the OI case. In Trees

in Algebra and Programming, pages 268–279, 1981.

[Man02] Sebastian Maneth. The complexity of compositions of deterministic tree

transducers. In Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), pages 265–276, 2002.

REFERENCES 91

[Man03] Sebastian Maneth. The macro tree transducer hierarchy collapses for

functions of linear size increase. In Foundations of Software Technology

and Theoretical Computer Science (FSTTCS), pages 326–337, 2003.

[MB04] Sebastian Maneth and Giorgio Busatto. Tree transducers and tree com-

pressions. In Foundations of Software Science and Computation Struc-

tures (FoSSaCS), pages 363–377, 2004.

[MBPS05] Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl.

XML type checking with macro tree transducers. In Principles of

Database Systems (PODS), pages 283–294, 2005.

[MN08] Sebastian Maneth and Keisuke Nakano. XML type checking for macro

tree transducers with holes. In Programming Language Technologies for

XML (PLAN-X), 2008.

[MSV03] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans-

formers. Journal of Computer and System Sciences, 66:66–97, 2003.

[PS04] Thomas Perst and Helmut Seidl. Macro forest transducers. Information

Processing Letters, 89:141–149, 2004.

[Rou70] William C. Rounds. Mappings and grammars on trees. Mathematical

Systems Theory, 4:257–287, 1970.

[Rou73] William C. Rounds. Complexity of recognition in intermediate-level lan-

guages. In Foundations of Computer Science (FOCS), pages 145–158,

1973.

[ST80] Peter J. Downeyand Ravi Sethi and Robert Endre Tarjan. Variations on

the common subexpression problem. Journal of the ACM, 27:758–771,

1980.

[Tha70] James W. Thatcher. Generalized2 sequential machine maps. Journal of

Computer and System Sciences, 4:339–367, 1970.

[Tha73] James W. Thatcher. Tree automata: an informal survey. In Currents in

the Theory of Computing, pages 143–172. Prentice-Hall, 1973.

[Toz01] Akihiko Tozawa. Towards static type checking for XSLT. In ACM Sym-

posium on Document Engineering, pages 18–27, 2001.

REFERENCES 92

[Voi05] Janis Voigtländer. Tree Transducer Composition as Program Transfor-

mation. PhD thesis, Technische Universität Dresden, 2005.

