
The Complexity of Translation Membership
for Macro Tree Transducers

Kazuhiro Inaba
The University of Tokyo

kinaba@is.s.u-tokyo.ac.jp

Sebastian Maneth
NICTA and University of New South Wales
sebastian.maneth@nicta.com.au

ABSTRACT
Macro tree transducers (mtts) are a useful formal model for
XML query and transformation languages. In this paper
one of the fundamental decision problems on translations,
namely the “translation membership problem” is studied for
mtts. For a fixed translation, the translation membership
problem asks whether a given input/output pair is element
of the translation. For call-by-name mtts this problem is
shown to be NP-complete. The main result is that trans-
lation membership for call-by-value mtts is in polynomial
time. For several extensions, such as addition of regular
look-ahead or the generalization to multi-return mtts, it is
shown that translation membership still remains in PTIME.

1. INTRODUCTION
Macro tree transducers (mtts) [6] are a popular formal model
for XML query and transformation languages (cf., e.g., [4,
13, 15]. They are powerful enough to represent a wide range
of practical transformations, and they subsume various well-
known models of tree translations such as attribute gram-
mars, MSO-definable tree translations [2], or pebble tree
transducers [16]. Yet, mtts have many decidable properties
such as exact typechecking or emptiness and finiteness and
membership of their domains and ranges. These make mtts
a useful device for static verification of XML translation
programs.

In the algorithms that decide such properties, we sometimes
encounter as a sub-problem the “translation membership
problem” [11]. For a fixed translation, the translation mem-
bership problem asks whether a given input/output pair
is element of the translation. Although the problem itself
seems simple, it is far beyond trivial to solve the problem ef-
ficiently, in particular if we consider nondeterministic mtts.
Nondeterminism is useful when using the mtt to approxi-
mate the behavior of a “real” (Turing-complete) program-
ming language (viz. a complicated if-then-else expression; it
is translated into an mtt that nondeterministically chooses
one of the conditional branches). Depending on the order of

Copyright is held by the author/owner(s).
International Workshop on Programming Language Techniques for XML
(PLAN-X 2009),
January 24, 2009, Savannah, Georgia.

evaluation, there are two different models of nondeterminis-
tic mtts, namely, call-by-value (also called inside-out or IO
for short) and call-by-name (outside-in or OI). Note that in
the limit, to one given input tree of size n an mtt can as-

sociate at most 222n

-many different output trees, if the mtt
operates in OI mode. In contrast, the limit for mtts in IO
mode is at most 22n

different output trees for a given input
tree of size n. Consider the following four rules of an mtt.

start(a(x1)) → double(x1, double(x1, e))
double(a(x1), y1) → double(x1, double(x1, y1))
double(e, y1) → f(y1, y1) | g(y1, y1).

For an input tree of the form sn = a(a(· · · a(e) · · ·)) with n
a-nodes, this mtt generates a full binary tree of height 2n

(and thus of size 22n

). If the mtt operates in OI derivation
mode, then each node of the binary output tree is nondeter-

ministically labeled either f or g; thus, there are 222n

-many
output trees associated to the input tree sn. If, however,
the mtt with the same rules operates in IO derivation mode,
then for input sn it generates only 22n

many different out-
put trees (the nodes on one level of an output tree all have
the same label). Thus, mtts in OI derivation mode (call-
by-name) have “much more” nondeterminism than mtts in
IO derivation mode (call-by-value). This difference suggests
that translation membership is computationally harder for
OI-mtts than for IO-mtts.

In this paper, we first show that for OI-mtts, translation
membership is NP-complete, and so is for compositions of
multiple IO-mtts (Section 3). We then present our main re-
sult: translation membership for IO-mtts is solvable in poly-
nomial time (Section 4). Our algorithm for IO translation
membership is based on a technique called inverse type infer-
ence. For an mtt M and a given output type, i.e., a regular
tree language L of output trees, inverse type inference con-
structs a description of the corresponding input type, i.e., of
the regular tree language M−1(L). Note that, inverse type
inference basically takes exponential time, because the size
of the inverse-type automaton itself can be that large [16,
15, 17]. To avoid this, we construct the automaton on-the-
fly and obtain the PTIME efficiency. Our technique is then
generalized to several extension of IO-mtts, such as addition
of regular look-ahead or the generalization to multi-return
mtts. In fact, we even consider a more powerful look-ahead
mechanism that is based on tree automata with equality and
disequality constraints between siblings [1].

Note that, for total deterministic mtts: OI equals IO, and

by Theorem 15 of [12], given an input tree s, the output
tree τ(s) can be computed in time O(|s| + |t|), even for an
n-fold composition of total deterministic mtts. Hence, by
simply computing the output, translation membership can
be solved in linear time for this class of translations. The
result can easily be extended to deterministic but partial
mtts (in either IO or OI derivation mode), as mentioned at
the end of Section 4.

2. DEFINITIONS
For a finite set A, we denote by |A| the number of its el-
ements. A finite set Σ with a mapping rank : Σ → N is
called a ranked alphabet. We often write σ(k) to indicate
that rank(σ) = k and write Σ(k) to denote the subset of
Σ of rank-k symbols. The product of Σ and a set B is the
ranked alphabet Σ × B = {⟨σ, b⟩(k) | σ(k) ∈ Σ, b ∈ B}.
Throughout the paper, we fix the sets of input variables
X = {x1, x2, . . . }, parameters Y = {y1, y2, . . . }, and let-
variables Z = {z1, z2, . . . }, which are all of rank 0. We
assume any other alphabet to be disjoint with X, Y , and
Z. The set Xi is defined as {x1, . . . , xi}, and Yi and Zi are
defined similarly.

The set TΣ of trees t over a ranked alphabet Σ is defined

by the BNF t ::= σ(

k
z }| {

t, . . . , t) for σ ∈ Σ(k). We often omit
parentheses for rank-0 and rank-1 symbols. We recursively
define the function label from TΣ × N∗ to Σ as follows.
For t = σ(t1, . . . , tk), σ(k) ∈ Σ, k ≥ 0, and t1, . . . , tk ∈
TΣ, label(t, ϵ) = σ and label(t, i.ν) = label(ti, ν). Thus,
the empty list ϵ denotes the root node and ν.i denotes the
i-th child of ν. We define the set pos(t) = {ν ∈ N∗ |
label(t, ν) is defined}. We denote by |t| the number of nodes
in the tree t. For a node v of t, t|v denotes the subtree of
t rooted at the node v. For trees t, t1, . . . , tn ∈ TΣ and
σ1, . . . , σn ∈ Σ(0), we denote by t [σ1/t1, . . . , σn/tn] the si-
multaneous substitution of the σi by the ti.

Let Σ and ∆ be ranked alphabets. A relation τ ⊆ TΣ × T∆

is called a tree translation (over Σ and ∆) or simply a trans-
lation. We define range(τ) = {b | ∃a : (a, b) ∈ τ}. For two
translations τ1 and τ2, their sequential composition τ1 ; τ2

(“τ1 followed by τ2”) is the translation {(a, c) | ∃b : ((a, b) ∈
τ1, (b, c) ∈ τ2)}. For two classes T1 and T2 of translations,
we define T1 ; T2 = {τ1 ; τ2 | τ1 ∈ T1, τ2 ∈ T2}. The k-fold
composition of the class T of translations is denoted by T k.

Definition 1. A macro tree transducer (mtt) M is a tuple
(Q, Σ, ∆, q0, R), where Q is the ranked alphabet of states, Σ

and ∆ are the input and output alphabets, q0 ∈ Q(0) is the
initial state, and R is the finite set of rules of the form

⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym) → r

where q ∈ Q(m), σ ∈ Σ(k), and r is a tree in T∆∪(Q×Xk)∪Ym .
Rules of such form are called ⟨q, σ⟩-rules, and the set of right-
hand sides of all ⟨q, σ⟩-rules is denoted by Rq,σ. We define
the size of the mtt by |M | =

P

{|r| | r ∈ Rq,σ, q ∈ Q, σ ∈ Σ}.

For the remainder of this section, let M be an mtt as in
Definition 1. A state q of a macro tree transducer can be

regarded as a (nondeterministic) function in functional pro-
gramming languages. Depending on the order of evaluation,
two different semantics can be considered: call-by-value (or
inside-out, IO) and call-by-name (or, outside-in, OI). Let
µ ∈ {IO, OI}. For the tree u ∈ T∆∪(Q×TΣ)∪Y , its meaning

with respect to M JuKM
µ ⊆ T∆∪Y is inductively defined as

follows JyiKM
µ = {yi}Jδ(u1, . . . , un)KM
µ = {δ(t1, . . . , tn) |

ti ∈ JuiKM
µ for all i}J⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)KM

µ =
[

r∈Rq,σ

“q
r[x1/s1, . . . , xk/sk]

yM

µ
←−
µ

(Ju1KM
µ , . . . , JumKM

µ)
”

where ←−
IO

and ←−
OI

denote IO- and OI-substitution, respec-

tively, and are defined as follows for L, L1, . . . , Ln ⊆ T∆∪Y .

L ←−
µ

(L1, . . . , Ln) =
[

t∈L

„

t ←−
µ

(L1, . . . , Ln)

«

t ←−
IO

(L1, . . . , Ln) = {t[y1/t1, . . . , yn/tn] |

ti ∈ Li for all i}
yi ←−

OI
(L1, . . . , Ln) = Li

δ(t1, . . . , tm) ←−
OI

(L1, . . . , Ln) =

{δ(t′1, . . . , t′m) | t′i ∈
“

ti ←−
OI

(L1, . . . , Ln)
”

for all i}.

The difference of IO- and OI- semantics lies in the interpre-
tation of state calls. In IO-semantics we use IO-substitution
for parameters; each parameter yi is bound to some fixed
(but nondeterministically chosen) tree in JuiKM

IO, and every
occurrence of yi is replaced with the same single tree. On the
other hand, in OI-semantics, each parameter is bound to the
set of trees JuiKM

OI, and at every occurrence of yi we nonde-
terministically choose some tree in JuiKM

OI, independent from
the choices made at other occurrences of yi.

As an example of the definition of JuKµ, consider the example
from the Introduction. Note that there we used slightly dif-
ferent notation: the right-hand side double(x, double(x, e))
is now written as ⟨double, x1⟩(⟨double, x1⟩(e)), i.e., we dis-
tinguish the first parameter—which is the special parameter
that is bound to an input tree in TΣ—from others bound to
output trees in T∆, by enclosing it with angle brackets. Now,
let us compute J⟨start, a(a(e))⟩Kµ.J⟨start, a(a(e))⟩Kµ

= J⟨double, a(e)⟩(⟨double, a(e)⟩(e))Kµ

= J⟨double, e⟩(⟨double, e⟩(y1))Kµ ←−
µ

J⟨double, a(e)⟩(e)Kµ

=
“

{f(y1, y1), g(y1, y1)} ←−
µ

J⟨double, e⟩(e)Kµ

”

←−
µ

J⟨double, a(e)⟩(e)Kµ

=
“

{f(y1, y1), g(y1, y1)} ←−
µ

{f(y1, y1), g(y1, y1)}
”

←−
µ

J⟨double, a(e)⟩(e)Kµ

Here, we encountered the µ-substitution L ←−
µ

L for L =

{f(y1, y1), g(y1, y1)}. Now, if µ = IO then L ←−
µ

L = {f(f(y1,

y1), f(y1, y1)), g(f(y1, y1), f(y1, y1)), f(g(y1, y1), g(y1, y1)),

g(g(y1, y1), g(y1, y1))}; the size of the set is 2 × 2 = 4.
On the other hand, if µ = OI then we obtain L ←−

µ
L =

{f(f(y1, y1), f(y1, y1)), f(f(y1, y1), g(y1, y1)), f(g(y1, y1),
f(y1, y1)), f(g(y1, y1), g(y1, y1)), g(f(y1, y1), f(y1, y1)),
g(f(y1, y1), g(y1, y1)), g(g(y1, y1), f(y1, y1)), g(g(y1, y1),
g(y1, y1))}; the size is 2 × 22 = 8 where the exponent 2
comes from the number of occurrences of the parameter y1

in each target term of the substitution.

We define the translation realized by M in µ-mode by the
relation τµ,M = {(s, t) ∈ TΣ ×T∆ | t ∈ J⟨q0, s⟩Kµ}. The class
of all translations realized by all mtts in µ-mode is denoted
by MTTµ. An mtt is called deterministic (respectively, to-
tal) if for every q, σ, the number of rules |Rq,σ| is at most
(at least) 1; the corresponding classes of translations are de-
noted by prefix D (t). An mtt is called linear (in the input
variables) if in every right-hand side of the rules, each input
variable xi appears at most once; the corresponding class of
translation is denoted by prefix L. For example, the class of
translations realized by linear, deterministic, and total mtts
in OI mode is denoted by LDtMTTOI.

For a translation τ ⊆ TΣ × T∆, the translation membership
problem for τ is a decision problem that determines, given
a tree s ∈ TΣ and a tree t ∈ T∆, whether (s, t) ∈ τ . In
the rest of the paper, we focus on the data complexity of
this problem. That is, we measure the complexity in terms
of |s| + |t|, regarding the translation τ to be fixed. We will
always assume that the input and output tree that are inputs
to the problem are denoted by “s” and “t”.

3. NP-COMPLETE CLASSES
The first result is that translation membership for OI-mtts
is NP-hard, even for linear mtts. The proof is based on
the reduction to 3-SAT, which resembles [18] which shows
NP-completeness of the membership problem for indexed
languages. In fact, the indexed languages can be obtained
as yields (strings of leaves from left to right) of output lan-
guages of linear mtts (by the fact that each indexed lan-
guage is the yield of some OI context-free tree language [7]
and each OI context-free tree language is equivalent to the
range range(τ) of some τ ∈ LMTTOI by Corollary 6.13
in [6]). However, given a word w as input for the member-
ship problem of an indexed language L, it is not clear how
to construct a pair (s, t) such that (s, t) ∈ τOI,M for some
linear mtt if and only if w is in L. We can choose s = an

with n = length(w) and an LMTT which produces trees t
which have as yield the word w. But how to select such
a tree t as input for the translation membership problem?
Note that it is easy to construct from w an input for trans-
lation membership for a two-fold composition of mtts: the
second transducer realizes “yield”, i.e., it turns a tree t into
a monadic tree that represents t’s yield (such a transducer is
even total deterministic). Thus, it follows that translation
membership for two-fold compositions of mtts is NP-hard.
This was mentioned already in [11]. The next lemma shows
that even translation membership for a single linear mtt is
NP-hard.

Lemma 1 Translation membership for LMTTOI (and hence
MTTOI) is NP-hard.

Proof. We construct an mtt M = (Q, q0, Σ, ∆, R) so
that it generates the parse-trees of all satisfiable boolean
formulas in 3-conjunctive normal form, given the number of
variables n and clauses m as the inputs. We slightly abuse
our notation and write yv, yt, yf in place of y1, y2, y3, respec-

tively. Let Q = {q(0)
0 , q

(2)
c , q(3)}, Σ = {a(1), b(3), c(1), d(0)},

∆ = {∧(2),∨(3),¬(1), v(1), e(0)}, and R the following set of
rules:

⟨q0, a(x1)⟩ → ⟨q, x1⟩(v(e), e,¬(e))

⟨q0, a(x1)⟩ → ⟨q, x1⟩(v(e),¬(e), e)

⟨q, b(x1, x2, x3)⟩(yv, yt, yf) →
⟨q, x1⟩(v(yv), ⟨qc, x2⟩(yt, yv), ⟨qc, x3⟩(yf ,¬(yv)))

⟨q, b(x1, x2, x3)⟩(yv, yt, yf) →
⟨q, x1⟩(v(yv), ⟨qc, x2⟩(yt,¬(yv)), ⟨qc, x3⟩(yf , yv))

⟨qc, d⟩(y1, y2) → y1

⟨qc, d⟩(y1, y2) → y2

⟨q, c(x1)⟩(yv, yt, yf) → ∧(∨(yt, yt, yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf) → ∧(∨(yt, yt, yf), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf) → ∧(∨(yt, yf , yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf) → ∧(∨(yf , yt, yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf) → ∧(∨(yt, yf , yf), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf) → ∧(∨(yf , yf , yt), ⟨q, x1⟩(yv, yt, yf))

⟨q, c(x1)⟩(yv, yt, yf) → ∧(∨(yf , yt, yf), ⟨q, x1⟩(yv, yt, yf))

⟨q, d⟩(yv, yt, yf) → ∨(yt, yt, yf)

... (same as the ∨(· · ·) part of ⟨q, c⟩-rules)

⟨q, d⟩(yv, yt, yf) → ∨(yf , yt, yf).

From an input tree a(

n
z }| {

b(b(· · · b(cmd, d, d) · · ·), d, d)) of size
3n+m+2, it generates all satisfiable boolean formulas in 3-
conjunctive normal form with n variables and m conjuncts.
The output language encodes boolean formulas as follows: a
boolean variable pi for 0 ≤ i < n is represented as vie, and
three boolean operations ¬, ∧, and ∨ are represented as they
are. For example, the formula (p0∨¬p1∨p2)∧(¬p0∨p1∨p2)
is encoded as ∧(∨(e,¬ve, vve),∨(¬e, ve, vve)).

Intuitively, when the mtt reads the root node of the input, it
nondeterministically assigns a truth-value to the first vari-
able p0. The first ⟨q0, a⟩-rule is the case when it assigned
‘true’ and the other rule is for ‘false’. Three parameters
are passed to the state q. Intuitively, the first parameter yv

denotes the name of the next variable to be assigned a truth-
value. The second (and the third, respectively) parameter yt

(yf) denotes the set of ‘true’ (‘false’) literals (namely, vari-
ables or negated variables) that have been constructed up
to now. While reading b nodes in the state q, the mtt non-
deterministically assigns a truth-value to each variable p1 to
pn−1, similarly to p0. Here, OI-nondeterminism is crucially
used to represent arbitrary choice of positive and negative
literals; each time yt and yf are copied to the output, they
contain unevaluated “combs” of qc-calls (on d-nodes). Each
such comb represents the nondeterministic choice of any of
the positive (yt) or negative (yf) literals that have been
generated so far. The state qc means a union of two sets,
by taking two parameters and nondeterministically returns

either one of them. The parameter yt is assigned an uneval-
uated expression, e.g., like ⟨qc, d⟩(⟨qc, d⟩(¬p0, p1), p2), and
each time the value of yt is needed, it is nondeterministi-
cally evaluated to either ¬p0, p1, or p2. Then, while reading
c nodes in the input, the transducer generates m conjunc-
tions of ‘true’ clauses. Since we generate 3-CNF formulas,
each clause consists of a disjunction of exactly three literals.
There are seven possibilities (all combinations of yt and yf ,
except ∨(yf , yf , yf)), which are generated by the ⟨q, c⟩-rules
of the transducer.

It should be clear for the reader that this mtt generates all
(and only) satisfiable 3-CNF formulas; it nondeterministi-
cally constructs any of the 2n possible assignments to the
variables p0, . . . , pn−1, and under each assignment, gener-
ates any of the possible 7m types of ‘true’ formulas. The
point is, the choices at ⟨qc, d⟩ for enumerating all possible
literals are nondeterministically evaluated each time gener-
ating a disjunct, while the choices at ⟨q0, a⟩ and ⟨q, b⟩ for
enumerating all possible truth-value assignments are evalu-
ated and uniformly determined prior to the generation of all
conjuncts.

It is also obvious that, given any 3-CNF formula, we can in
polynomial time encode the formula to the above explained
encoding to obtain t, and count the number of variables
and clauses to obtain s. Then, (s, t) ∈ τM if and only if
the original formula is satisfiable. It is well known that the
satisfiability of 3-CNF is NP-complete (see, e.g., [8]).

In [11], we have proved two closely related results; one is that
the above NP-hard lowerbound is tight, i.e., the translation
membership for LMTTOI can be determined in NP time
complexity. The other is that the complexity of membership
problem of the output language is in NP, even for finitely
many compositions of MTTOI’s. Altogether, we have the
following theorem.

Theorem 2 Translation membership for MTTn
OI for n ≥ 1

is NP-complete.

Proof. NP-hardness follows from the preceding lemma.
Let τ ∈ MTTn

OI. We can easily construct a translation
τ ′ = {(s, π(s, t)) | (s, t) ∈ τ} in MTTn

OI where π is a new
binary symbol. This is done by changing the first mtt M1

(with input alphabet Σ and initial state q0) of the compo-

sition as follows. Replace for σ ∈ Σ(k) every ⟨q0, σ⟩-rule
with right-hand side t by the new rule ⟨q0, σ(x1, . . . , xk)⟩ →
π(σ(⟨qid , x1⟩, . . . , ⟨qid , xk⟩), t) and introduce ⟨qid , σ(x1, . . . ,
xk)⟩ → σ(⟨qid , x1⟩, . . . , ⟨qid , xk⟩) for the new state qid of rank
0. Then, the subsequent mtts Mi (2 ≤ i ≤ n) are augmented
by the new rule ⟨q0, π(x1, x2)⟩ → π(⟨qid , x1⟩, ⟨q0, x2⟩) and
qid rules as for M1. Note that (s, t) ∈ τ if and only if
π(s, t) ∈ range(τ ′). Since by Theorem 8 of [11] the com-
plexity of the membership test of range(τ ′) is in NP, we can
also check (s, t) ∈ τ in NP.

Note that compositions of two MTTIO’s can simulate all
MTTOI translations (Theorem 6.10 of [6]), and conversely,
compositions of MTTIO’s can be simulated by compositions
MTTOI’s (Theorem 7.8 of [6]). Therefore, we now have the
NP-completeness for compositions of MTTIO’s.

Corollary 3 Translation membership for MTTn
IO for n ≥ 2

is NP-complete.

4. TRACTABLE CLASSES
In this section, we first prove that IO-mtts have polynomial-
time translation membership, contrary to OI-mtts. Then we
extend the result to several other extensions of IO-mtts, and
to some restricted subclasses of OI-mtts.

The idea of the proof is based on inverse type inference for
mtts M (Theorem 7.4 of [6]); given a finite tree automaton
B (accepting output trees), we can effectively construct a fi-
nite tree automaton that recognizes the corresponding input
trees τ−1

M (L(B)). Given an output tree t, by constructing its
minimal dag representation (i.e., the pointer representation
of t such that all isomorphic subtrees are shared), we can
simply consider it as the trivial deterministic automaton Bt

with at most |t|-many states which recognizes {t}. Once
we have constructed the automaton A for τ−1

M (L(Bt)), we
merely need to check whether s ∈ L(A), in order to solve
translation membership for (s, t). However, the automaton
A can be very large: its worst case number of states is ex-
ponential in |Bt|. Thus, we must avoid to fully construct A
in order to obtain PTIME complexity. Our idea is to con-
struct A on demand, while running it on the tree s. Note
that inverse type inference of an IO-mtt constructs an input
type automaton which has states that are functions p from
Q to (V m → 2V) where V is the set of states of Bt, Q is the
set of states of M , and m is the maximum rank of states in
Q. Such a state p tells us for each q ∈ Q, which state of Bt

is obtained if we apply the state q to an input tree. That is,
if A reaches the state p after reading a tree s, it means that
running Bt on output trees in ⟨q, s⟩(t|v1 , . . . , t|vm) obtains
the states (p(q))(v1, . . . , vm).

Theorem 4 Let M be an mtt. Translation membership for
τ IO,M can be determined in time O(|s| · |t|2m+2 · |M |) where
m is the maximum rank of M ’s states.

Proof. Let tdag be the minimal dag representing t. It is
folklore that tdag can be computed in amortized linear time
in |t|, using hashing, and even in linear time using pseudo
radix sorting, see [3]. Let Vt be the set of nodes of tdag . We
define label(v) to denote the label in Σ of the node v ∈ Vt,
and child(v, i) to denote the i-th child node of v. Assuming
a standard pointer structure representing dags, we regard
each execution of label and child takes O(1) time.

Let ⊥ be an element distinct from Vt. Let V = Vt ∪ {⊥}
and label(⊥) to be undefined. Let run : TΣ → A with

A = 2
S

i Q(i)×V i×V be the function defined inductively as
follows

run(σ(s1, . . . , sk)) = tr(σ, run(s1), . . . , run(sk))

where tr is defined below. The set A contains the states
of the deterministic bottom-up automaton of τ−1(t), tr is
the transition function, and run computes the run of the
automaton. The intuition of the set of states A is, that
“(q, v⃗, v′) ∈ run(s′)” means that “if q is applied to the input
subtree s′ with output subtrees rooted at v⃗ as parameters,
then it may generate an output subtree rooted at v′”. The
special value ⊥ ∈ V is used to denote a tree that is not

a subtree of t. That is, for example, “(q, v⃗,⊥) ∈ run(s′)”
means that an application of q to s′ with parameters v⃗ may
yield a tree that is not a subtree of t.

The transition function tr : (
S

i Σ(i) ×Ai) → A is defined as
follows

tr(σ, a⃗) =
n

(q, v⃗, v′) ∈
[

i

Q(i) × V i × V

˛

˛

˛

∃r ∈ Rq,σ : fv⃗,⃗a(r, v′)
o

where fv⃗,⃗a : T∆∪(Q×X)∪Y × V → {true, false} is defined
inductively on right-hand sides of the rules:

fv⃗,⃗a(yi, v
′) = true if v′ = vi

fv⃗,⃗a(yi, v
′) = false if v′ ̸= vi

fv⃗,⃗a(δ(r1, . . . , rn), v′) =

label(v′) = δ∧
^

1≤i≤n

fv⃗,⃗a(ri, child(v′, i)) if v′ ∈ Vt

fv⃗,⃗a(δ(r1, . . . , rn),⊥) =
`

∃u⃗ ∈ V n :
^

1≤i≤n

fv⃗,⃗a(ri, ui)
´

∧

`

∀u′ ∈ Vt : ¬
`

label(u′) = δ ∧
^

1≤i≤n

child(u′, i) ̸= ui

´´

fv⃗,⃗a(⟨q′, xj⟩(r1, . . . , rn), v′) =

∃u⃗ ∈ V n :
“

(q′,u⃗, v′) ∈ aj ∧
^

1≤i≤n

fv⃗,⃗a(ri, ui)
”

.

The relation fv⃗,⃗a(r, v′) should be understood as: “evaluation
of r will yield the output subtree at v′, under the assumption
that the parameters y⃗ are bound to v⃗ and the effects of
application of a state to each child is as described by a⃗ ”.

For a tree t′ ∈ T∆, let ρ(t′) be v ∈ Vt if t′ = t|v, and
ρ(t′) = ⊥ otherwise. We also define ρ(T) for T ⊆ T∆ as
{ρ(t) | t ∈ T}. The correctness of the above construction
is verified by the following claim. Note that the claim is
just rephrasing the intuition of the set of states A explained
above, in a formal way.

Claim For every input tree s′, we have the following equa-
tion for all q ∈ Q, ri ∈ T∆∪(Q×TΣ), and an environment

Γ: ρ
“J⟨q, s′⟩(r1, . . . , rn)KM

IO

”

=
n

v′
˛

˛

˛

(q, (v1, . . . , vn), v′) ∈

run(s′), vi ∈ ρ(JriKM
IO) for all i

o

By applying the claim for q = q0 and s′ = s, we know that
t ∈ J⟨q, s⟩KM

IO is equal to (q0, (), vϵ) ∈ run(s) where vϵ is the
root node of tdag . Hence, the translation membership can
be determined by computing the set run(s).

The proof of the claim is by nested induction first on struc-
ture of s′, and then on the structure of right-hand sides of
the rules. Let s′ = σ(s1, . . . , sk) (the base case is the case
k = 0). By definition of the IO-semantics we have

ρ
“J⟨q, s′⟩(r1, . . . , rn)KM

IO

”

=
[

r∈Rq,σ

n

ρ(t′[y1/t1, . . . , yn/tn])
˛

˛

˛

t′ ∈ Jr[x⃗/s⃗]KM
IO, ti ∈ JriKM

IO for all i
o

and by definition of run, we have
n

v′
˛

˛

˛

(q, v⃗, v′) ∈ run(s′), vi ∈ ρ(JriKM
IO)

o

=
[

r∈Rq,σ

n

v′
˛

˛

˛

fv⃗,⃗a(r, v′), vi ∈ ρ(JriKM
IO)

o

where a⃗ = (run(s1), . . . , run(sk)). To show these two sets
are equal, it is sufficient to prove the the following state-
ment: if ρ(ti) = vi then {ρ(t′[y⃗/t⃗]) | t′ ∈ Jr[x⃗/s⃗]KM

IO} =
{v′ | fv⃗,⃗a(r, v′)}. The proof is by nested induction on the
structure of r. For example, if r = ⟨q′, xi⟩(r1, . . . , rn), we
have {v′ | fv⃗,⃗a(⟨q′, xi⟩(r1, . . . , rn), v′)} = {v′ | (q′, u⃗, v′) ∈
ai, fv⃗,⃗a(ri, ui) for all i}, which is by inner induction hypothe-
sis equal to {v′ |(q′, u⃗, v′)∈ ai, ui ∈ ρ(Jri[x⃗/s⃗, y⃗/t⃗]KM

IO) for all
i}, and then by outer induction hypothesis it is equal to
ρ(J⟨q′, si⟩(r1[x⃗/s⃗, y⃗/t⃗], . . . , rn[x⃗/s⃗, y⃗/t⃗])KM

IO) = {ρ(t′[y⃗/t⃗]) | t′

∈ Jr[x⃗/s⃗]KM
IO}. The other cases are proved similarly.

The time complexity for testing (q0, (), vϵ) ∈ run(s) is com-
puted as follows. The value run(s) for the whole input tree
s can be computed by executing the tr function on each
node of s. The computation is done in bottom-up fashion
as bottom-up tree automata does, so that the states in a⃗
are already constructed. The number of execution of the tr
function is |s|. The set tr(σ, a⃗) can be constructed by simply

testing all combinations of (q, v⃗, v′) ∈
S

i Q(i)×V i×V (which
is of size ≤ |Q| · |V |m+1) and r ∈ Rq,σ by fv⃗,⃗a. Note that
fv⃗,⃗a may receive |r|·|V | different pairs of arguments, and the
computation of each value fv⃗,⃗a(r′, v′) takes O(|V |m) time in
the worst case (the fv⃗,⃗a(⟨q′, xj⟩(· · ·)) case) assuming the val-
ues of fv⃗,⃗a are already computed for all subexpressions of r′.
Hence, O(|r| · |V |m+1) time is sufficient here. Note that the
fv⃗,⃗a(δ(· · ·),⊥) case can be computed efficiently in O(|V |)
time by remembering the number |{v | fv⃗,⃗a(r′, v)}| for each
sub-expression r′: the existence of u⃗ can be checked by veri-
fying the number is non-zero, and the check child(u′, i) ̸= ui

is replaced with “either not fv⃗,⃗a(r′, child(u′, i)) or the num-
ber is more than one”. Since it is only required to compute
the fv⃗,⃗a(δ(· · ·),⊥) cases at most |r| times, the time com-
plexity for the cases is O(|r| · |V |), which is subsumed by
O(|r| · |V |m+1). Altogether, multiplying all of them yields
the desired complexity bound O(|s|·|t|2m+2 ·|M |). Note that
we have |V | ≤ |t| + 1 by definition, and that the parameter
|M | subsumes Σq∈Q,r∈Rq,σ |r|.

The reader may wonder why the same approach does not
work for OI-mtts, whose inverses also preserve the regular
tree languages. The problem is, for OI, the states of the

inferred automata are in A = 2
S

i Q(i)×(2V)i×V instead of
A = 2

S

i Q(i)×V i×V . The difference is intuitively explained
as follows: in IO-mtts, every copy of a same parameter is an
identical output tree and thus corresponds to a single node
in V , while in OI-mtts, each copy is evaluated independently
and thus may correspond to different output nodes. To cap-
ture this phenomenon in the inverse type inference, each pa-
rameter must be represented by a set of nodes rather than
a single output node. The additional exponential implies
that a single state in A (a subset of

S

i Q(i)× (2V)i ×V) can
already be exponentially large. Therefore, on-the-fly con-
struction does not help to obtain a PTIME algorithm. Of
course, Lemma 1 implies that there is no PTIME algorithm
for translation membership for OI-mtts (unless NP=P).

Nevertheless, some subclasses of OI-mtts still admit PTIME
translation membership. Note that the essential difficulty of
OI-translation membership comes from the copying of pa-
rameters. Consider, for example, an OI-mtt that is linear in
the parameters (i.e., in every right-hand side each parameter
yi occurs at most once); then each parameter is either used
once or is never used. In this case, it can be represented
in the inverse-type automaton by a set of size ≤ 1. More
generally, if an OI-mtt is finite copying in the parameter, its
translation membership can be tested in polynomial time.
An mtt is finite copying in the parameter if there exists a
constant c such that for any q, s, and u ∈ J⟨q, s⟩(y1, . . . , yk)K,
the number of occurrences of yi in u is no more than c; the
number c is called a (parameter) copying bound by M . Note
that “linear-in-parameter” mtts are a special case of finite
copying mtts; they are not only finite copying with copying
bound 1, but also the finiteness can be known by simply
counting the number of syntactic occurrences of each vari-
able in the rules, while finite copying in general is a semantic
property of mtts. Also note that finite copying is a decidable
property, and the copying bound can be effectively obtained.
(See Lemma 4.10 of [5]. Although it is proved only for total
deterministic mtts, the same technique also works for IO-
and OI- nondeterministic mtts.)

Theorem 5 Let M be an mtt that is finite copying in the
parameters with copying bound c. Then, translation mem-
bership for τOI,M can be determined in time O(|s|·|t|c(2m+2)·
c · |M |) where m is the maximum rank of M ’s states.

Proof. Let tdag be the minimal dag representing t. Let
V be the set of nodes of tdag . We define label(v) to denote
the label in Σ of the node v ∈ V , and child(v, i) to denote
the i-th child node of v.

Let A = 2
S

i Q(i)×Pc(V)i×V where Pc(V) = {S ⊆ V | |S| ≤
c} and the function run be defined as follows:

run(σ(s1, . . . , sk)) = tr(σ, run(s1), . . . , run(sk)).

The transition function tr : (
S

i Σ(i) ×Ai) → A is defined as
follows

tr(σ, a⃗) =
n

(q, β⃗, v′) ∈
[

i

Q(i) × Pc(V)i × V

˛

˛

˛

∃r ∈ Rq,σ : fβ⃗,⃗a(r, v′)
o

where fβ⃗,⃗a : T∆∪(Q×X)∪Y × V → {true, false} defined as
follows:

fβ⃗,⃗a(yi, v
′) = true if v′ ∈ βi

fβ⃗,⃗a(yi, v
′) = false if v′ ̸∈ βi

fβ⃗,⃗a(δ(r1, . . . , rn), v′) =
^

1≤i≤n

fβ⃗,⃗a(ri, child(v′, i))

if label(v′) = δ

fβ⃗,⃗a(δ(r1, . . . , rn), v′) = false if label(v′) ̸= δ

fβ⃗,⃗a(⟨q′, xj⟩(r1, . . . , rn), v′) =

∃γ⃗ : ((q′, γ⃗, v′) ∈ aj and for all i and u ∈ γi : fβ⃗,⃗a(ri, u)).

Note that we do not have the ⊥ element in V this time.
Instead, the empty set ∅ plays the same role. The com-
plexity of this algorithm is computed similarly to the case

of IO-mtts: we need to test by fβ⃗,⃗a all combinations of

a ∈
S

i Q(i) × Pc(V)i × V (which is of size O(|Q| · |V |cm+1)
this time) and r ∈ Rq,σ, then fβ⃗,⃗a receives |r| · |V | dif-
ferent pairs of arguments, and finally the computation of
fv⃗,⃗a(⟨q′, xj⟩(· · ·)) takes O(|V |cm ·c) time where |V |cm comes
from the part “∃γ⃗” and c comes from the part “u ∈ γi”. The
correctness is shown by proving the following claim.

Claim For every input tree s′, t′ ∈ J⟨q, s′⟩(u1, . . . , un)KM
OI

if and only if there exist subtrees t1,1, . . . , t1,l1 , . . . , tn,1, . . . ,
tn,ln of t such that {ti,1, . . ., ti,ni} ⊆ JuiKM

OI with li ≤ c and
(q,({ρ(t1,1), . . . , ρ(t1,l1)}, . . . , {ρ(tn,1), . . . , ρ(tn,ln)}), ρ(t′))∈
run(s′), where ρ is defined as in the proof of Theorem 4.

The proof is by induction, too. The finite-copying property
ensures that in the semantics of the mtt, OI-substitution is
done only on parameters yi whose number of occurrence is
less than or equal to c. It justifies that our algorithm only
considers sets of size ≤c as parameter representation.

On the other hand, the PTIME result for IO-mtts can be
generalized to a more powerful extension of IO-mtts. One
popular way to extend mtts is by regular look-ahead. Mtts
with regular look-ahead are equipped with one determin-
istic bottom-up tree automaton and are allowed to select
a rule with respect to the state of the tree automaton, in
addition to the current state and the label of the current
node. Since any MTTIO’s with regular look-ahead can be
simulated by a normal MTTIO (Theorem 5.19 of [6]), the
translation membership for MTTIO with regular look-ahead
is also in PTIME. In fact, we can further extend the model
to use a more expressive model of look-ahead, namely, tree
automata with equality and disequality constraints [1], while
still preserving the PTIME translation membership.

Definition 2. A bottom-up tree automaton with equality
and disequality constraints (TAC) is a tuple B = (P, Σ, δ),
where P is the set of states, Σ the input alphabet, and δ
is a set of transitions of the form (σ(m), p1, . . . , pm, E, D, p)
where E, D ⊆ {1, . . . , m}2 are the sets of equality and dis-
equality constraints, respectively. A list of trees t1, . . . , tm

is said to satisfy the constraints if ∀(i, j) ∈ E : ti = tj and

∀(i, j) ∈ D : ti ̸= tj . We define δ̃ inductively as follows:

δ̃(σ(t1, . . . , tm)) = {p ∈ P |
∃(σ, p1, . . . , pm, E, D, p) ∈ δ :

pi ∈ δ̃(ti) for all i and t1, . . . , tm satisfy E and D}.

A TAC is total and deterministic if for any σ ∈ Σ, p1, . . . , pm

∈ P , and t1, . . . , tm ∈ TΣ, there exists one unique transition
(σ(m), p1, . . . , pm, E, D, p) ∈ δ such that t1, . . . , tm satisfies
the constraints E and D. For a total deterministic TAC, we
abuse the notation and denote by δ̃(t) the unique element
of itself.

Note that, as well as a normal bottom-up tree automaton,
we can run a TAC on a tree in (amortized) linear time, by
first computing the minimal dag representation of the input
tree; due to its minimality, the equality (or disequality) test
of two subtrees can be carried out in constant time, by a
single pointer comparison. Also note that total deterministic

TACs are equally expressive as its nondeterministic version
(as shown in Proposition 4.2 of [1] by a variant of usual
powerset construction). Hence, we adopt total deterministic
TACs as our look-ahead model for mtts, without sacrificing
the expressiveness.

Definition 3. An mtt with TAC look-ahead is a tuple M =
(Q, q0, Σ, ∆, R, B) where B = (P, Σ, δ) is a total and deter-
ministic TAC, and all other components are defined as for
mtts, except that the form of rules are as follows:

⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym) → r (p1, . . . , pk, E, D).

The set of right-hand side of all rules of such form is denoted
by Rq,σ,p1,...,pk,E,D. The size |M | is defined as for normal
mtts.

The semantics of mtts with TAC look-ahead differs from
normal mtts only in the side-condition of state application,
which is defined as follows:

J⟨q, σ(s1, . . . , sk)⟩(u1, . . . , um)KM
µ =

[

r∈R′

“q
r[x1/s1, . . . , xk/sk]

yM

µ
←−
µ

(Ju1KM
µ , . . . , JumKM

µ)
”

where R′ = Rq,σ,δ̃(s1),...,δ̃(sk),E,D such that

s1, . . . , sk satisfies E and D.

In a word, rules in Rq,σ,p1,...,pk,E,D are used when the state
q is applied to a node satisfying all the following three con-
ditions: (1) labeled σ, (2) the child subtrees s1, . . . , sk of the

node satisfy the constraints E and D, and (3) δ̃(si) = pi for
all i.

Mtts with TAC look-ahead are strictly more expressive than
normal mtts. For example, the translation {(π(s, s), e) | s ∈
TΣ} where π is a symbol of rank 2 and e is of rank 0, can
be done by a transducer with TAC look-ahead. But no mtt-
composition can realize this translation because the domain
is not regular (by Corollary 5.6 of [6], the domain of any mtt
must be a regular tree language). Nevertheless, the PTIME
translation membership for MTTIO can be extended to mtts
with TAC look-ahead.

Theorem 6 Let M be an mtt with TAC look-ahead. Trans-
lation membership for τ IO,M can be determined in time
O(|s| · |t|2m+2 · |M |) where m is the maximum rank of M ’s
states.

Proof. The basic idea is again the on-the-fly construc-
tion of the inverse-type automaton, but this time, to deal
with the look-ahead, we run parallely the look-ahead au-
tomaton.

Let sdag be the minimal dag representation of s, which can
be computed in O(|s|) time. As explained before, the equal-
ity (or disequality) test of two subtrees of sdag can be carried
out in constant time. Let Vs be the set of nodes of sdag . Let
Vt be the set of nodes of tdag and V = Vt ∪ {⊥}. The func-
tions label(v), child(v, i), and ρ(t) are defined as in the proof
of Theorem 4.

Let A = 2
S

i Q(i)×V i×V and run : TΣ → Vs × P × A (note
the difference of the return value of run, compared to that
in Theorem 4) be the function defined as follows

run(s′) = tr(s′, σ, run(s1), . . . , run(sk))

with s′ = σ(s1, . . . , sk)

where the function tr is:

tr(s′, σ, (s1, p1, a1), . . . , (sk, pk, ak)) =
“

s′, δ̃(s′),

˘

(q, v⃗, v′) ∈
[

i

Q(i) × V i × V
˛

˛∃r ∈ Rq,σ,p1,...,pk,E,D :

(s1, . . . , sk) satisfies E, D and fv⃗,⃗a(r, v′)
¯

”

.

The definition of fv⃗,⃗a remains the same as in Theorem 4.

The look-ahead state δ̃(s′) can be computed from σ, p1, . . . ,
pk, and s1, . . . , sk in constant time. By the same argument
as the case of normal mtts, we obtain the O(|s| · |t|2m+2 ·
|M |) time complexity. The correctness of the construction
is proved also in the same way as for normal mtts. That
is, we can prove the following claim by nested induction on
structure of s′, and then on the structure of right-hand sides
of the rules.

Claim For every input tree s′, we have the following equa-
tion for all q ∈ Q, ri ∈ T∆∪(Q×TΣ)∪Y , and an environment

Γ: ρ
“J⟨q, s′⟩(r1, . . . , rn)KM

IO

”

=
n

v′
˛

˛

˛

(q, (v1, . . . , vn), v′) ∈

run(s′), vi ∈ ρ(JriKM
IO) for all i

o

Again, applying the claim to ρ(J⟨q0, s⟩KM
IO), we know that

the translation membership is equivalent to (q0, (), vϵ) ∈
run(s) where vϵ is the root node of tdag . Hence, the trans-
lation membership can be determined by computing the set
run(s).

Another extension of mtts that admits a polynomial time
translation membership is multi-return mtts (mr-mtts) [9,
10]. In an mr-mtt, states may return multiple trees (with
the initial state returning exactly one tree). Mr-mtts are
strictly more expressive than normal mtts, and furthermore,
have better closure properties under composition with top-
down tree transducers [10].

Definition 4. A multi-return macro tree transducer (mtt)
M is a tuple (Q, Σ, ∆, q0, R, D), where Q, Σ, ∆, and q0 are
defined as for mtts, D : Q → N is the dimension such that
D(q0) = 1, and R is the finite set of rules of the form

⟨q, σ(x1, . . . , xk)⟩(y1, . . . , ym) → r

where q ∈ Q(m), σ ∈ Σ(k), and r ∈ rhs
D(q)
Xk

where for e ≥ 1
and a set Q, the set rhse

W is defined as:

r ::= l1 . . . ln (u1, . . . , ue) (n ≥ 0)

l ::= let (zj+1, . . . , zj+D(q′)) = ⟨q′, xi⟩(u1, . . . , un) in

(j ∈ N, q′ ∈ Q(n), xi ∈ W)

with u1, u2, . . . ∈ T∆∪Ym∪Z . We usually omit parentheses
around tuples of size one, i.e., write like let zj = · · · in u1.

We require any rule to be well-formed, that is, the leftmost
occurrence of any variable zi must appear at a “binding”
position (between ‘let’ and ‘=’), and the next occurrence (if
any) must appear after the ‘in’ corresponding to the bind-
ing occurrence. The set of right-hand sides of such rules is
denoted by Rq,σ. The size |M | of the mr-mtt is defined to
be the sum of the size of right-hand sides, i.e., the number
of δ, Y , Z, and Q × X nodes.

The IO-semantics of mr-mtts is inductively defined as fol-
lows. For u ∈ T∆∪Ym∪Z , JuKM

IO ⊆ T∆∪Y ∪Z is

Jδ(u1, . . . , uk)KM
IO = {δ(t1, . . . , te) | ti ∈ JuiKM

IO for all i}JyiKM
IO = {yi}JziKM
IO = {zi}

and for κ ∈ rhse
TΣ

, JκKM
IO ⊆ T e

∆∪Y ∪Z is

J(u1, . . . , ue)KM
IO = {(t1, . . . , te) | ti ∈ JuiKM

IO for all i}Jlet (z1, . . . , zd) = ⟨q, σ(s1, . . . , sm)⟩(u1, . . . , uk) in κ′KM
IO

=
n

ξ[z1/t1, . . . , zd/td] |
ξ ∈ Jκ′KM

IO, r ∈ Rq,σ, (t1, . . . , td) ∈
“Jr[x1/s1, . . . , xm/sm]KM

IO ←−
IO

(Ju1KM
IO, . . . , JukKM

IO)
”o

.

The translation τ IO,M ⊆ TΣ × T∆ realized by M is the set
{(s, t) | t ∈ Jlet z = ⟨q0, s⟩ in zK}M

IO.

Here is an example of an mr-mtt, which is used in [9] as a
counterexample that cannot be realized in normal mtts:

⟨q0, s(x)⟩() → let (z1, z2) = ⟨q1, x⟩(A(E)) in r(a(z1), z2)

⟨q0, s(x)⟩() → let (z1, z2) = ⟨q1, x⟩(B(E)) in r(b(z1), z2)

⟨q0, z⟩() → r(e, E)

⟨q1, s(x)⟩(y2) → let (z1, z2) = ⟨q1, x⟩(A(y2)) in (a(z1), z2)

⟨q1, s(x)⟩(y2) → let (z1, z2) = ⟨q1, x⟩(B(y2)) in (b(z1), z2)

⟨q1, z⟩(y2) → (e, y2)

This nondeterministic translation takes as input monadic
trees of the form s(s(· · · s(z) · · ·)) and produces output trees
of the form r(t1, t2) where t1 is a monadic tree over a’s and
b’s (and a leaf e), and t2 is a monadic tree over A’s and B’s
such that t2 is the reverse of t1, and both have the same
size as the input. For instance, r(a(a(b(e))), B(A(A(E)))) is
a possible output tree for the input s(s(s(z))). Consider
the return value of the state call J⟨q1, s(z)⟩(E)K: it is the
set {(a(E), A(E)), (b(E), B(E))} of pairs of trees. In a word,
the state q1 returns only mutually reverse pairs of monadic
trees. This is impossible in normal mtts, in which we must
carry out two state calls in order to obtain two output
trees; two nondeterministic state calls are evaluated inde-
pendently, and cannot avoid generating unrelated pairs of
trees.

Despite their expressive power over normal mtts, mr-mtts
still have a similar complexity for inverse type inference.
Therefore the translation membership remains in PTIME.

Theorem 7 Let M be an mr-mtt. Translation membership
for τ IO,M can be determined in time O(|s| · |t|2m+2d · |M |)
where m is the maximum rank of the states and d is the
maximum dimension.

Proof. For mr-mtts, we take the set A of inverse-type

automaton as A = 2
S

i,j Q(i,j)×V i×V j

where Q(i,j) is the set
of states q of rank(q) = i and D(q) = j. The intuition of
the set of states A is similar to the case of normal mtts.
That is, “(q, v⃗, w⃗) ∈ run(s′)” means that “if q is applied
to the input subtree s′ with output subtrees rooted at v⃗ as
parameters, then it may return a tuple of output subtrees
w⃗”. The construction is quite similar to that of the proof of
Theorem 4.

As a final remark we would like to mention the complex-
ity of translation membership for deterministic mtts; it can
be determined in linear time. Since domains of composi-
tions of mtts are regular, we can factor out the partiality
and have the following decomposition: for µ ∈ {IO, OI},
DMTTn

µ ⊆ FTA ;DtMTTn where FTA is the class of partial
identities whose domain is regular (analogous to Theorem
6.18 of [6]). Therefore, to compute the translation member-
ship for a composition of deterministic mtts, we first check
in O(|s|) time whether the given input s is contained in the
domain of the translation, and then check the translation
membership for composition of deterministic and total mtts.
Here, by Theorem 15 of [12], for a translation τ ∈ DtMTTn

we can compute the unique output tree t′ ∈ τ(s) from the
input s in time O(|s| + |t′|), and during the computation,
the size of every intermediate tree is less than or equal to
2n · |t′|. Hence, for testing (s, t) ∈ τ , we simply compute
τ(s); if the size of any intermediate tree exceeds 2n · |t| then
(s, t) cannot be an element of τ , and otherwise, we compare
the computed tree τ(s) with t. The time complexity of the
above procedure is O(|s| + 2n · |t|).

Theorem 8 Let µ ∈ {IO, OI} and n ≥ 1. Translation
membership for DMTTn

µ is in O(|s| + 2n|t|).

5. FUTURE WORK
The complexity of the translation membership problem re-
mains open for several interesting subclasses and extensions
of mtts. One example is the mtt with holes [14] in IO mode.
Note that, similar to Theorem 4.6 of [14], hole-mtts in IO
mode are equal to MTTIO ; YIELD, which is included in
MTTIO ; LDtMTT. An algorithm based on inverse type in-
ference does not work, because the parameter part of the
states of the inverse-type automaton is a set of functions
[V → V], which is exponential in size with respect to the
output tree |t|. On the other hand, it is not clear either
whether it is NP-hard. Note that mtts with holes in OI
mode can simulate all OI-mtts, and therefore their transla-
tion membership is NP-complete.

Another interesting class is that of 1-parameter mtts in OI
mode. Our encoding of 3-SAT used three parameters. In
fact, the number of parameters can be reduced to two by
embedding the encodings of boolean variables in the input
tree s. Can we encode 3-SAT into a 1-parameter mtt? Or,
do 1-parameter mtts actually have PTIME translation mem-
bership? (Again, the inverse-type automaton technique used
in this paper for IO-mtts does not seem to work in this case,
because the automaton gets too large.)

Acknowledgments This work was partly supported by
Japan Society for the Promotion of Science.

6. REFERENCES
[1] B. Bogaert and S. Tison. Equality and disequality

constraints on direct subterms in tree automata. In
Symposium on Theoretical Aspects of Computer
Science (STACS), 1992.

[2] B. Courcelle. Monadic second-order definable graph
transductions: A survey. Theoretical Computer
Science, 126:53–75, 1994.

[3] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations
on the common subexpression problem. Journal of the
ACM, 27:758–771, 1980.

[4] J. Engelfriet and S. Maneth. A comparison of pebble
tree transducers with macro tree transducers. Acta
Informatica, 39:613–698, 2003.

[5] J. Engelfriet and S. Maneth. Macro tree translations
of linear size increase are mso definable. SIAM
Journal on Computing, 32:950–1006, 2003.

[6] J. Engelfriet and H. Vogler. Macro tree transducers.
Journal of Computer and System Sciences, 31:71–146,
1985.

[7] M. J. Fischer. Grammars with Macro-Like
Productions. PhD thesis, Harvard University,
Cambridge, 1968.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[9] K. Inaba and H. Hosoya. XML transformation
language based on monadic second order logic. In
Programming Language Technologies for XML
(PLAN-X), pages 49–60, 2007.

[10] K. Inaba, H. Hosoya, and S. Maneth. Multi-return
macro tree transducers. In Conference on
Implementation and Application of Automata (CIAA),
2008.

[11] K. Inaba and S. Maneth. The complexity of tree
transducer output languages. In Foundations of
Software Technology and Theoretical Computer
Science (FSTTCS), 2008 (Available at
http://arbre.is.s.u-tokyo.ac.jp/˜kinaba/fst.pdf).

[12] S. Maneth. The complexity of compositions of
deterministic tree transducers. In Foundations of
Software Technology and Theoretical Computer
Science (FSTTCS), 2002.

[13] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML
type checking with macro tree transducers. In
Principles of Database Systems (PODS), 2005.

[14] S. Maneth and K. Nakano. XML type checking for
macro tree transducers with holes. In Programming
Language Technologies for XML (PLAN-X), 2008.

[15] S. Maneth, T. Perst, and H. Seidl. Exact XML type
checking in polynomial time. In International
Conference on Database Theory (ICDT), 2007.

[16] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. Journal of Computer and System
Sciences, 66:66–97, 2003.

[17] T. Perst and H. Seidl. Macro forest transducers.
Information Processing Letters, 89:141–149, 2004.

[18] W. C. Rounds. Complexity of recognition in
intermediate-level languages. In Foundations of
Computer Science (FOCS), 1973.

